add ray intersection checks

This commit is contained in:
ohyzha
2024-10-29 12:41:07 +02:00
parent 5ece0acc77
commit ced45f7b72
4 changed files with 512 additions and 0 deletions

View File

@@ -0,0 +1,240 @@
/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
#include "Ray.hpp"
#include <vector>
namespace
{
int SolveQuadraticEquation(float a, float b, float c, float& x0, float& x1)
{
float discr = b * b - 4 * a * c;
if (discr < 0)
{
return 0;
}
if (discr == 0)
{
x0 = x1 = (-b) / (2 * a);
return 1;
}
float q = (b > 0) ? -0.5 * (b + std::sqrt(discr)) : -0.5 * (b - std::sqrt(discr));
x0 = q / a;
x1 = c / q;
if (x0 > x1)
{
std::swap(x0, x1);
}
return 2;
}
};
namespace OpenVulkano::Scene
{
using namespace Math::Utils;
std::optional<RayHit> Ray::IntersectSphere(const Math::Vector3f& center, float radius) const
{
RayHit hitRes;
if (intersectRaySphere(m_origin, m_dir, center, radius, hitRes.point, hitRes.normal))
{
hitRes.distance = distance(m_origin, hitRes.point);
return hitRes;
}
return {};
}
std::optional<RayHit> Ray::IntersectTriangle(const Math::Vector3f& v0, const Math::Vector3f& v1,
const Math::Vector3f& v2) const
{
RayHit hitRes;
vec2 baryPos;
if (intersectRayTriangle(m_origin, m_dir, v0, v1, v2, baryPos, hitRes.distance) && hitRes.distance >= 0)
{
hitRes.point = (1.f - baryPos.x - baryPos.y) * v0 + baryPos.x * v1 + baryPos.y * v2;
// calculate like cross product or leave empty ? what if current triangle is smoothly shaded ?
hitRes.normal = Math::Vector3f(0);
return hitRes;
}
return {};
}
std::optional<RayHit> Ray::IntersectQuad(const Math::Vector3f& v0, const Math::Vector3f& v1,
const Math::Vector3f& v2, const Math::Vector3f& v3) const
{
if (auto hitRes = IntersectTriangle(v0, v1, v2))
{
return hitRes;
}
if (auto hitRes = IntersectTriangle(v0, v2, v3))
{
return hitRes;
}
return {};
}
std::optional<RayHit> Ray::IntersectAABB(const Math::AABB& bbox) const
{
RayHit h1, h2;
const int intersections = this->IntersectAABB(bbox, h1, h2);
switch (intersections)
{
case 1:
return h1;
case 2:
return (h1.distance < h2.distance) ? h1 : h2;
}
return {};
}
int Ray::IntersectAABB(const Math::AABB& bbox, RayHit& p1, RayHit& p2) const
{
const auto bMax = bbox.max;
const auto bMin = bbox.min;
float tmin = (bMin.x - m_origin.x) / m_dir.x;
float tmax = (bMax.x - m_origin.x) / m_dir.x;
if (tmin > tmax)
{
std::swap(tmin, tmax);
}
float tymin = (bMin.y - m_origin.y) / m_dir.y;
float tymax = (bMax.y - m_origin.y) / m_dir.y;
if (tymin > tymax)
{
std::swap(tymin, tymax);
}
if ((tmin > tymax) || (tymin > tmax))
{
return 0;
}
if (tymin > tmin)
{
tmin = tymin;
}
if (tymax < tmax)
{
tmax = tymax;
}
float tzmin = (bMin.z - m_origin.z) / m_dir.z;
float tzmax = (bMax.z - m_origin.z) / m_dir.z;
if (tzmin > tzmax)
{
std::swap(tzmin, tzmax);
}
if ((tmin > tzmax) || (tzmin > tmax))
{
return 0;
}
if (tzmin > tmin)
{
tmin = tzmin;
}
if (tzmax < tmax)
{
tmax = tzmax;
}
int intersections = 2;
if (tmin < 0)
{
if (tmax < 0)
{
return 0;
}
intersections--;
tmin = tmax;
}
p1.point = m_origin + tmin * m_dir;
p2.point = m_origin + tmax * m_dir;
p1.distance = distance(m_origin, p1.point);
p2.distance = distance(m_origin, p2.point);
p1.normal = p2.normal = Math::Vector3f(0);
return intersections;
}
std::optional<RayHit> Ray::IntersectPlane(const Math::Vector3f& pOrigin, const Math::Vector3f& pNorm) const
{
RayHit hit;
Math::Vector3f norm = normalize(pNorm);
if (intersectRayPlane(m_origin, m_dir, pOrigin, pNorm, hit.distance))
{
hit.point = m_origin + m_dir * hit.distance;
hit.normal = norm;
return hit;
}
return {};
}
int Ray::IntersectSphere(const Math::Vector3f& center, float radius, RayHit& p1, RayHit& p2) const
{
const Math::Vector3f L = m_origin - center;
const float a = dot(m_dir, m_dir); // equals to length^2
const float b = 2 * dot(m_dir, L);
const float c = dot(L, L) - radius * radius;
float x1, x2;
int roots = ::SolveQuadraticEquation(a, b, c, x1, x2);
if (roots == 0)
{
return 0;
}
if (x1 > x2)
{
std::swap(x1, x2);
}
if (roots == 1)
{
// ray intersects sphere behind the origin
if (x1 < 0)
{
return 0;
}
p1.point = m_origin + x1 * m_dir;
p1.distance = distance(m_origin, p1.point);
p1.normal = normalize(p1.point - center);
p2 = p1;
}
else if (roots == 2)
{
// ray intersects sphere behind the origin
if (x1 < 0 && x2 < 0)
{
return 0;
}
if (x1 >= 0 && x2 >= 0)
{
p1.point = m_origin + x1 * m_dir;
p1.distance = distance(m_origin, p1.point);
p1.normal = normalize(p1.point - center);
p2.point = m_origin + x2 * m_dir;
p2.distance = distance(m_origin, p2.point);
p2.normal = normalize(p2.point - center);
}
else
{
--roots;
if (x1 < 0)
{
x1 = x2;
}
p1.point = m_origin + x1 * m_dir;
p1.distance = distance(m_origin, p1.point);
p1.normal = normalize(p1.point - center);
p2 = p1;
}
}
return roots;
}
}