New StableVector but Iterator is missing.

This commit is contained in:
Metehan Tuncbilek
2024-10-03 18:15:48 +03:00
parent 6661e9e9af
commit eb2ca2ff5a
4 changed files with 716 additions and 571 deletions

View File

@@ -1,3 +1,9 @@
/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
#pragma once
#include "Base/Wrapper.hpp"
@@ -9,6 +15,8 @@
#include <vector>
#include <algorithm>
#include <iostream>
#pragma warning(push)
#pragma warning(disable : 4200)
#pragma warning(disable : 6011)
@@ -22,28 +30,31 @@ namespace OpenVulkano
*
* @throw Please know that this vector creates array gaps when you remove an element.
*/
template<typename T, size_t DEFAULT_CHUNK_SIZE = 32, int GROWTH_FACTOR = 2> class StableVector
template<typename T, size_t GROW_FACTOR = 2, size_t DEFAULT_CHUNK_SIZE = 32> class StableVector
{
struct VectorChunk
{
VectorChunk* m_prev = nullptr;
VectorChunk* m_next = nullptr;
size_t m_chunkSize;
int64_t m_lastUsedIndex;
bool* m_fill;
T m_data[0];
VectorChunk* m_next = nullptr; // Next chunk
VectorChunk* m_prev = nullptr; // Previous chunk
VectorChunk(size_t size) : m_chunkSize(size), m_lastUsedIndex(-1)
size_t m_size; // Size of the chunk
size_t m_capacity; // Capacity of the chunk
size_t m_nextIndex; // Next index to insert
size_t m_gapCount; // Count of emptied gaps in the chunk
bool* m_occupiedIndices; // filled gaps array
T m_data[0]; // data array
VectorChunk(size_t size) : m_size(0), m_capacity(size), m_nextIndex(0), m_gapCount(0)
{
m_fill = reinterpret_cast<bool*>(m_data + size);
memset(m_fill, 0, size * sizeof(bool));
m_occupiedIndices = reinterpret_cast<bool*>(m_data + size);
memset(m_occupiedIndices, 0, size * sizeof(bool));
}
~VectorChunk()
{
for (size_t i = 0; i < m_chunkSize; i++)
for (size_t i = 0; i < m_size; i++)
{
if (m_fill[i])
if (m_occupiedIndices[i])
{
m_data[i].~T();
}
@@ -51,499 +62,506 @@ namespace OpenVulkano
m_prev = nullptr;
m_next = nullptr;
}
size_t GetRealIndex(size_t reqIndex)
{
if (m_gapCount == 0)
{
return reqIndex;
}
size_t gapCount = 0;
for (size_t i = 0; i < reqIndex; i++)
{
if (!m_occupiedIndices[i])
{
gapCount++;
}
}
return reqIndex + gapCount;
}
T& GetAlignedData(size_t index)
{
size_t realIndex = GetRealIndex(index);
for (size_t i = realIndex; i < m_capacity; i++)
{
if (m_occupiedIndices[i])
{
return m_data[i];
}
}
}
size_t GetLastOccupiedIndex()
{
for (size_t i = m_capacity - 1; i >= 0; i--)
{
if (m_occupiedIndices[i])
{
return i;
}
}
return 0;
}
};
public:
class Iterator
{
public:
Iterator(VectorChunk* ptr, size_t index = 0) : m_ptr(ptr), m_index(index) {}
Iterator(VectorChunk* chunk, size_t index) : m_chunk(chunk), m_index(index) {}
T& operator*() { return m_ptr->m_data[m_index]; }
T* operator->() { return &m_ptr->m_data[m_index]; }
T& operator*() { return m_chunk->GetAlignedData(m_index); }
T* operator->() { return &m_chunk->GetAlignedData(m_index); }
Iterator operator++()
Iterator& operator++()
{
++m_index;
MovetoNextValidChunk();
MoveToNextChunk();
return *this;
}
Iterator operator++(int)
{
Iterator temp = *this;
++(*this);
++m_index;
MoveToNextChunk();
return temp;
}
Iterator operator--()
Iterator& operator--()
{
--m_index;
MovetoNextValidChunk();
MoveToPrevChunk();
return *this;
}
Iterator operator--(int)
{
Iterator temp = *this;
--(*this);
--m_index;
MoveToPrevChunk();
return temp;
}
template<typename Init> Iterator operator=(const Init& other)
Iterator operator+(size_t n)
{
m_ptr = other.m_ptr;
m_index = other.m_index;
return *this;
Iterator temp = *this;
temp.m_index += n;
temp.MoveToNextChunk();
return temp;
}
bool operator==(const Iterator& other) const { return m_ptr == other.m_ptr && m_index == other.m_index; }
bool operator!=(const Iterator& other) const { return !(*this == other); }
private:
void MovetoNextValidChunk()
Iterator operator-(size_t n)
{
while (m_ptr && (m_index > m_ptr->m_chunkSize || !m_ptr->m_fill[m_index]))
{
if (m_index >= m_ptr->m_chunkSize)
{
m_ptr = m_ptr->m_next;
m_index = 0;
}
else ++m_index;
}
Iterator temp = *this;
temp.m_index -= n;
temp.MoveToPrevChunk();
return temp;
}
if (m_ptr && m_index >= m_ptr->m_chunkSize)
bool operator==(const Iterator& other) const
{
return m_chunk == other.m_chunk && m_index == other.m_index;
}
bool operator!=(const Iterator& other) const
{
return m_chunk != other.m_chunk || m_index != other.m_index;
}
protected:
void MoveToNextChunk()
{
while (m_chunk && m_index > m_chunk->m_size)
{
m_ptr = m_ptr->m_next;
m_index = 0;
MovetoNextValidChunk();
m_index -= m_chunk->m_size;
m_chunk = m_chunk->m_next;
}
}
void MoveToPrevChunk() {}
private:
VectorChunk* m_ptr;
VectorChunk* m_chunk;
size_t m_index;
};
public:
StableVector() : m_firstChunk(nullptr), m_lastChunk(nullptr)
StableVector() : m_FirstChunk(nullptr), m_LastChunk(nullptr), m_Size(0), m_Capacity(0)
{
VectorChunk* chunk = SpawnChunk(DEFAULT_CHUNK_SIZE);
m_firstChunk = chunk;
m_lastChunk = chunk;
m_currentSize = 0;
m_totalCap = DEFAULT_CHUNK_SIZE;
m_FirstChunk = Grow(DEFAULT_CHUNK_SIZE);
m_LastChunk = m_FirstChunk;
m_Capacity = DEFAULT_CHUNK_SIZE;
}
StableVector(size_t size) : m_FirstChunk(nullptr), m_LastChunk(nullptr), m_Size(0), m_Capacity(0)
{
m_FirstChunk = Grow(size);
m_LastChunk = m_FirstChunk;
m_Capacity = size;
}
StableVector(size_t size, const T& value)
: m_FirstChunk(nullptr), m_LastChunk(nullptr), m_Size(0), m_Capacity(0)
{
m_FirstChunk = Grow(size);
m_LastChunk = m_FirstChunk;
m_Capacity = size;
for (size_t i = 0; i < size; i++)
{
PushBack(value);
}
}
StableVector(std::initializer_list<T> list)
: m_FirstChunk(nullptr), m_LastChunk(nullptr), m_Size(0), m_Capacity(0)
{
m_FirstChunk = Grow(list.size());
m_LastChunk = m_FirstChunk;
m_Capacity = list.size();
for (const T& value: list)
{
PushBack(value);
}
}
StableVector(const StableVector<T>& copy)
: m_FirstChunk(nullptr), m_LastChunk(nullptr), m_Size(0), m_Capacity(0)
{
m_firstChunk = nullptr;
m_lastChunk = nullptr;
m_currentSize = 0;
m_totalCap = 0;
m_FirstChunk = Grow(copy.m_Capacity); // One big chunk to make Stable contiguous.
m_LastChunk = m_FirstChunk;
m_Capacity = copy.m_Capacity;
VectorChunk* currentChunk = copy.m_firstChunk;
while (currentChunk)
for (size_t i = 0; i < copy.Size(); i++)
{
for (size_t i = 0; i < currentChunk->m_chunkSize; i++)
{
if (currentChunk->m_fill[i]) { PushBack(currentChunk->m_data[i]); }
}
currentChunk = currentChunk->m_next;
PushBack(copy.At(i));
}
}
StableVector(StableVector<T>&& move) noexcept
: m_FirstChunk(nullptr), m_LastChunk(nullptr), m_Size(0), m_Capacity(0)
{
m_firstChunk = move.m_firstChunk;
m_lastChunk = move.m_lastChunk;
m_currentSize = move.m_currentSize;
m_totalCap = move.m_totalCap;
m_FirstChunk = move.m_FirstChunk;
m_LastChunk = move.m_LastChunk;
m_Size = move.m_Size;
m_Capacity = move.m_Capacity;
move.m_firstChunk = nullptr;
move.m_lastChunk = nullptr;
move.m_currentSize = 0;
move.m_totalCap = 0;
move.m_FirstChunk = nullptr;
move.m_LastChunk = nullptr;
move.m_Size = 0;
move.m_Capacity = 0;
}
~StableVector()
{
VectorChunk* currentChunk = m_firstChunk;
VectorChunk* currentChunk = m_FirstChunk;
while (currentChunk)
{
VectorChunk* temp = currentChunk;
currentChunk = currentChunk->m_next;
temp->~VectorChunk();
::operator delete(temp);
VectorChunk* nextChunk = currentChunk->m_next;
currentChunk->~VectorChunk();
::operator delete(currentChunk);
currentChunk = nextChunk;
}
}
/**
* Adds the value to the first empty slot in the StableVector
*
* @param value - The value to be added
*/
void Add(const T& value)
{
VectorChunk* currentChunk = m_firstChunk;
while (currentChunk)
{
for (size_t i = 0; i < currentChunk->m_chunkSize; i++)
{
if (!currentChunk->m_fill[i])
{
currentChunk->m_data[i] = value;
currentChunk->m_fill[i] = true;
m_currentSize++;
if (i > currentChunk->m_lastUsedIndex) currentChunk->m_lastUsedIndex = i;
return;
}
}
currentChunk = currentChunk->m_next;
}
VectorChunk* chunk = SpawnChunk(size_t(m_lastChunk->m_chunkSize * GROWTH_FACTOR));
new (&m_lastChunk->m_data[++m_lastChunk->m_lastUsedIndex]) T(value);
m_lastChunk->m_fill[m_lastChunk->m_lastUsedIndex] = true;
m_currentSize++;
}
void PushBack(const T& value)
{
if (m_lastChunk->m_lastUsedIndex + 1 == m_lastChunk->m_chunkSize)
if (m_LastChunk->m_nextIndex == m_LastChunk->m_capacity)
{
VectorChunk* chunk = SpawnChunk(size_t(m_lastChunk->m_chunkSize * GROWTH_FACTOR));
VectorChunk* newChunk = Grow(m_LastChunk->m_capacity * GROW_FACTOR);
m_LastChunk->m_next = newChunk;
newChunk->m_prev = m_LastChunk;
m_LastChunk = newChunk;
}
new (&m_lastChunk->m_data[++m_lastChunk->m_lastUsedIndex]) T(value);
m_lastChunk->m_fill[m_lastChunk->m_lastUsedIndex] = true;
m_currentSize++;
new (&m_LastChunk->m_data[m_LastChunk->m_nextIndex]) T(value);
m_LastChunk->m_occupiedIndices[m_LastChunk->m_nextIndex] = true;
m_LastChunk->m_nextIndex++;
m_LastChunk->m_size++;
m_Size++;
}
/// std version of push_back(const T& value)
void push_back(const T& value) { PushBack(value); }
void PushBack(T&& value) noexcept
{
if (m_lastChunk->m_lastUsedIndex + 1 == m_lastChunk->m_chunkSize)
if (m_LastChunk->m_nextIndex == m_LastChunk->m_capacity)
{
VectorChunk* chunk = SpawnChunk(size_t(m_lastChunk->m_chunkSize * GROWTH_FACTOR));
VectorChunk* newChunk = Grow(m_LastChunk->m_capacity * GROW_FACTOR);
m_LastChunk->m_next = newChunk;
newChunk->m_prev = m_LastChunk;
m_LastChunk = newChunk;
}
new (&m_lastChunk->m_data[++m_lastChunk->m_lastUsedIndex]) T(std::move(value));
m_lastChunk->m_fill[m_lastChunk->m_lastUsedIndex] = true;
m_currentSize++;
new (&m_LastChunk->m_data[m_LastChunk->m_nextIndex]) T(std::move(value));
m_LastChunk->m_occupiedIndices[m_LastChunk->m_nextIndex] = true;
m_LastChunk->m_nextIndex++;
m_LastChunk->m_size++;
m_Size++;
}
/**
* std version of PushBack(const T& value)
*/
void push_back(const T& value) { PushBack(value); }
/// std version of push_back(T&& value)
void push_back(T&& value) { PushBack(value); }
/**
* std version of PushBack(T&& value)
*/
void push_back(T&& value) { PushBack(std::move(value)); }
template<typename... Args> void Emplace(Args&&... args)
// Checks the first available gap and inserts. If no gap it works like push_back(const T& value)
void Push(const T& value)
{
VectorChunk* currentChunk = m_firstChunk;
VectorChunk* currentChunk = m_FirstChunk;
while (currentChunk)
{
for (size_t i = 0; i < currentChunk->m_chunkSize; i++)
if (currentChunk->m_gapCount > 0) // If there is a gap check occupied indices to find the first gap
{
if (!currentChunk->m_fill[i])
for (size_t i = 0; i < currentChunk->m_capacity; i++)
{
currentChunk->m_data[i] = T(std::forward<Args>(args)...);
currentChunk->m_fill[i] = true;
m_currentSize++;
if (i > currentChunk->m_lastUsedIndex) currentChunk->m_lastUsedIndex = i;
return;
if (!currentChunk->m_occupiedIndices[i])
{
new (&currentChunk->m_data[i]) T(value);
currentChunk->m_occupiedIndices[i] = true;
currentChunk->m_size++;
currentChunk->m_gapCount--;
m_Size++;
return;
}
}
}
currentChunk = currentChunk->m_next;
}
VectorChunk* chunk = SpawnChunk(size_t(m_lastChunk->m_chunkSize * GROWTH_FACTOR));
PushBack(value);
}
new (&m_lastChunk->m_data[++m_lastChunk->m_lastUsedIndex]) T(std::forward<Args>(args)...);
m_lastChunk->m_fill[m_lastChunk->m_lastUsedIndex] = true;
m_currentSize++;
// Checks the first available gap and inserts. If no gap it works like push_back(T&& value)
void Push(T&& value) noexcept
{
VectorChunk* currentChunk = m_FirstChunk;
while (currentChunk)
{
if (currentChunk->m_gapCount > 0) // If there is a gap check occupied indices to find the first gap
{
for (size_t i = 0; i < currentChunk->m_capacity; i++)
{
if (!currentChunk->m_occupiedIndices[i])
{
new (&currentChunk->m_data[i]) T(std::move(value));
currentChunk->m_occupiedIndices[i] = true;
currentChunk->m_size++;
currentChunk->m_gapCount--;
m_Size++;
return;
}
}
}
}
PushBack(std::move(value));
}
template<typename... Args> void EmplaceBack(Args&&... args)
{
if (m_lastChunk->m_lastUsedIndex + 1 == m_lastChunk->m_chunkSize)
VectorChunk* chunk = SpawnChunk(size_t(m_lastChunk->m_chunkSize * GROWTH_FACTOR));
new (&m_lastChunk->m_data[++m_lastChunk->m_lastUsedIndex]) T(std::forward<Args>(args)...);
m_lastChunk->m_fill[m_lastChunk->m_lastUsedIndex] = true;
m_currentSize++;
}
/**
* std version of EmplaceBack(Args&&... args)
*/
template<typename... Args> void emplace_back(Args&&... args) { EmplaceBack(std::forward<Args>(args)...); }
/**
* Pops the last element of the StableVector
*
* @throw Please know that this pop function also reduces the chunk's lastUsedIndex
*/
void PopBack()
{
if (m_currentSize == 0) return;
if (m_lastChunk->m_lastUsedIndex == -1)
if (m_LastChunk->m_nextIndex == m_LastChunk->m_capacity)
{
VectorChunk* temp = m_lastChunk;
m_lastChunk = m_lastChunk->m_prev;
m_lastChunk->m_next = nullptr;
temp->~VectorChunk();
::operator delete(temp);
VectorChunk* newChunk = Grow(m_LastChunk->m_capacity * GROW_FACTOR);
m_LastChunk->m_next = newChunk;
newChunk->m_prev = m_LastChunk;
m_LastChunk = newChunk;
}
m_lastChunk->m_data[m_lastChunk->m_lastUsedIndex].~T();
m_lastChunk->m_fill[m_lastChunk->m_lastUsedIndex] = false;
m_lastChunk->m_lastUsedIndex--;
m_currentSize--;
new (&m_LastChunk->m_data[m_LastChunk->m_nextIndex]) T(std::forward<Args>(args)...);
m_LastChunk->m_occupiedIndices[m_LastChunk->m_nextIndex] = true;
m_LastChunk->m_nextIndex++;
m_LastChunk->m_size++;
m_Size++;
}
/**
* std version of PopBack()
*/
/// std version of emplace_back
template<typename... Args> void emplace_back(Args&&... args) { EmplaceBack(std::forward<Args>(args)...); }
// Checks the first available gap and inserts. If no gap it works like emplace_back(Args&&... args)
template<typename... Args> void Emplace(Args&&... args)
{
VectorChunk* currentChunk = m_FirstChunk;
while (currentChunk)
{
if (currentChunk->m_gapCount > 0) // If there is a gap check occupied indices to find the first gap
{
for (size_t i = 0; i < currentChunk->m_capacity; i++)
{
if (!currentChunk->m_occupiedIndices[i])
{
new (&currentChunk->m_data[i]) T(std::forward<Args>(args)...);
currentChunk->m_occupiedIndices[i] = true;
currentChunk->m_size++;
currentChunk->m_gapCount--;
m_Size++;
return;
}
}
}
}
EmplaceBack(std::forward<Args>(args)...);
}
void PopBack()
{
if (m_Size == 0)
{
return; // return? or make
}
m_LastChunk->m_data[m_LastChunk->m_nextIndex - 1].~T();
m_LastChunk->m_occupiedIndices[m_LastChunk->m_nextIndex - 1] = false;
m_LastChunk->m_nextIndex--;
m_LastChunk->m_size--;
m_Size--;
}
/// std version of pop_back
void pop_back() { PopBack(); }
constexpr T& Back() const
{
if (m_currentSize == 0)
if (m_Size == 0)
{
throw std::out_of_range("Vector is empty!");
throw std::out_of_range("Index out of range");
}
return m_lastChunk->m_data[m_lastChunk->m_lastUsedIndex];
return m_LastChunk->m_data[m_LastChunk->GetLastOccupiedIndex()];
}
/// std version of back
constexpr T& back() const { return Back(); }
constexpr T& Front() const
{
if (m_currentSize == 0)
if (m_Size == 0)
{
throw std::out_of_range("Vector is empty!");
throw std::out_of_range("Index out of range");
}
return m_firstChunk->m_data[0];
return m_FirstChunk->m_data[0];
}
/**
* std version of Back()
*/
constexpr T& back() const { return Back(); }
/**
* std version of Front()
*/
/// std version of front
constexpr T& front() const { return Front(); }
void Remove(size_t index)
{
size_t localIndex = index;
VectorChunk* chunk = GetChunk(localIndex);
if (chunk)
auto handle = FindChunk(index);
if (!handle.first)
{
chunk->m_data[localIndex].~T();
chunk->m_fill[localIndex] = false;
m_currentSize--;
throw std::out_of_range("Index out of range");
}
else throw std::out_of_range("Index out of range!");
size_t realIndex = handle.first->GetRealIndex(handle.second);
if (realIndex >= handle.first->m_size)
{
throw std::out_of_range("Index out of range");
}
handle.first->m_data[realIndex].~T();
handle.first->m_occupiedIndices[realIndex] = false;
handle.first->m_size--;
handle.first->m_gapCount++;
m_Size--;
}
void Remove(const T& value)
// Temporary non correct solution. (DONT MIND THIS ERASE)
void erase(Iterator it)
{
VectorChunk* currentChunk = m_firstChunk;
size_t index = 0;
VectorChunk* currentChunk = m_FirstChunk;
while (currentChunk)
{
for (size_t i = 0; i < currentChunk->m_chunkSize; i++)
if (index + currentChunk->m_size > it.m_index)
{
if (currentChunk->m_fill[i] && currentChunk->m_data[i] == value)
{
currentChunk->m_data[i].~T();
currentChunk->m_fill[i] = false;
m_currentSize--;
return;
}
size_t realIndex = currentChunk->GetRealIndex(it.m_index);
currentChunk->m_data[realIndex].~T();
currentChunk->m_occupiedIndices[realIndex] = false;
currentChunk->m_size--;
currentChunk->m_gapCount++;
m_Size--;
return;
}
index += currentChunk->m_size;
currentChunk = currentChunk->m_next;
}
}
/**
* std version of Remove(size_t index)
*/
void erase(size_t index) { Remove(index); }
/**
* std version of Remove(const T& value)
*/
void erase(const T& value) { Remove(value); }
std::vector<T> ToVector() const
T& operator[](size_t index) { return At(index); }
T& At(size_t index)
{
std::vector<T> vec;
VectorChunk* currentChunk = m_firstChunk;
if (index >= m_Size) [[unlikely]]
{
throw std::out_of_range("Index out of range");
}
auto handle = FindChunk(index);
return handle.first->GetAlignedData(handle.second);
}
/// std version of at
T& at(size_t index) { return At(index); }
size_t Size() const noexcept { return m_Size; }
/// std version of size
size_t size() const noexcept { return m_Size; }
size_t Capacity() const noexcept { return m_Capacity; }
/// std version of capacity
size_t capacity() const noexcept { return m_Capacity; }
bool Empty() const noexcept { return m_Size == 0; }
/// std version of empty
bool empty() const noexcept { return m_Size == 0; }
Iterator begin() { return Iterator(m_FirstChunk, 0); }
Iterator end() { return Iterator(m_LastChunk, m_LastChunk->m_nextIndex - 1); }
const Iterator& cbegin() { return Iterator(m_FirstChunk, 0); }
const Iterator& cend() { return Iterator(m_LastChunk, m_LastChunk->m_nextIndex - 1); }
protected:
VectorChunk* Grow(size_t requestSize)
{
VectorChunk* newChunk = static_cast<VectorChunk*>(
::operator new(sizeof(VectorChunk) + requestSize * sizeof(T) + requestSize * sizeof(bool)));
new (newChunk) VectorChunk(requestSize);
return newChunk;
}
std::pair<VectorChunk*, size_t> FindChunk(size_t index)
{
size_t leftIndex = index;
VectorChunk* currentChunk = m_FirstChunk;
while (currentChunk)
{
for (size_t i = 0; i < currentChunk->m_chunkSize; i++)
if (leftIndex < currentChunk->m_size)
{
if (currentChunk->m_fill[i])
{
vec.push_back(currentChunk->m_data[i]);
}
return { currentChunk, leftIndex };
}
leftIndex -= currentChunk->m_size;
currentChunk = currentChunk->m_next;
}
return vec;
}
T& At(size_t index) const
{
if (index >= Size()) [[unlikely]]
throw std::out_of_range("Index out of range!");
return (*this)[index];
}
bool Empty() const { return m_currentSize == 0; }
bool empty() const { return Empty(); }
T& operator[](size_t index) const
{
VectorChunk* chunk = m_firstChunk;
size_t localIndex = index;
while (chunk)
{
if (localIndex > chunk->m_chunkSize - 1)
{
localIndex -= (chunk->m_chunkSize);
chunk = chunk->m_next;
}
else break;
}
return chunk->m_data[localIndex];
}
size_t Size() const { return m_currentSize; }
size_t size() const { return Size(); }
size_t Capacity() const { return m_totalCap; }
size_t capacity() const { return Capacity(); }
void Clear()
{
VectorChunk* currentChunk = m_firstChunk;
while (currentChunk)
{
VectorChunk* temp = currentChunk;
currentChunk = currentChunk->m_next;
delete temp;
}
m_firstChunk = nullptr;
m_lastChunk = nullptr;
m_currentSize = 0;
m_totalCap = DEFAULT_CHUNK_SIZE;
m_firstChunk = SpawnChunk(DEFAULT_CHUNK_SIZE);
m_lastChunk = m_firstChunk;
}
StableVector<T>& operator=(const StableVector<T>& copy)
{
if (this == &copy) return *this;
Clear();
m_firstChunk = nullptr;
m_lastChunk = nullptr;
m_currentSize = 0;
m_totalCap = 0;
VectorChunk* currentChunk = copy.m_firstChunk;
for (auto it = copy.begin(); it != copy.end(); ++it) PushBack(*it);
}
StableVector<T>& operator=(StableVector<T>&& move) noexcept
{
if (this == &move) return *this;
Clear();
m_firstChunk = move.m_firstChunk;
m_lastChunk = move.m_lastChunk;
m_currentSize = move.m_currentSize;
m_totalCap = move.m_totalCap;
move.m_firstChunk = nullptr;
move.m_lastChunk = nullptr;
move.m_currentSize = 0;
move.m_totalCap = 0;
return *this;
}
Iterator begin() { return Iterator(m_firstChunk, 0); }
Iterator end() { return Iterator(m_lastChunk, m_lastChunk->m_lastUsedIndex + 1); }
const Iterator& cbegin() const { return Iterator(m_firstChunk, 0); }
const Iterator& cend() const { return Iterator(m_lastChunk, m_lastChunk->m_lastUsedIndex + 1); }
private:
VectorChunk* SpawnChunk(size_t requestedSize)
{
VectorChunk* chunk = static_cast<VectorChunk*>(
::operator new(sizeof(VectorChunk) + requestedSize * sizeof(T) + requestedSize * sizeof(bool)));
new (chunk) VectorChunk(requestedSize);
if (m_lastChunk)
{
chunk->m_prev = m_lastChunk;
m_lastChunk->m_next = chunk;
m_lastChunk = chunk;
m_totalCap += m_lastChunk->m_chunkSize;
}
return chunk;
}
VectorChunk* GetChunk(size_t& localIndex)
{
VectorChunk* chunk = m_firstChunk;
while (chunk)
{
if (localIndex > chunk->m_chunkSize - 1)
{
localIndex -= (chunk->m_chunkSize);
chunk = chunk->m_next;
}
else break;
}
return chunk;
throw std::out_of_range("Index out of range");
}
private:
VectorChunk* m_firstChunk;
VectorChunk* m_lastChunk;
size_t m_currentSize;
size_t m_totalCap;
VectorChunk* m_FirstChunk;
VectorChunk* m_LastChunk;
size_t m_Size;
size_t m_Capacity;
};
}