- Using std::array instead of c arrays
- Methods and functions are now in PascalCase
- Using std::reverse in EndianSwap
- Using little_endian bool variable
- TRUE_ is now TRUE_NORTH
- Added constructors to GPSCoords class
- GetCurrentTimestamp() method
- Added setter for altitude variable
- Minor renamings
This commit is contained in:
Vladyslav Baranovskyi
2024-09-23 22:09:36 +03:00
parent 0fd5b1aec8
commit ed87e1dfdb
2 changed files with 326 additions and 269 deletions

View File

@@ -5,16 +5,24 @@
*/
#include "ExifBuilder.hpp"
#define ARRAY_COUNT(Array) (sizeof(Array) / sizeof(*Array))
#include <array>
#include <algorithm>
#include <bit>
#include <chrono>
#include <ctime>
#include <iterator>
#include <iomanip>
#include <sstream>
namespace
{
char EXIF_HEADER_AND_PADDING[] = {'E', 'x', 'i', 'f', 0, 0};
int const EXIF_HEADER_SIZE = ARRAY_COUNT(EXIF_HEADER_AND_PADDING);
const int EXIF_HEADER_SIZE = 6;
std::array<char, EXIF_HEADER_SIZE> EXIF_HEADER_AND_PADDING = { 'E', 'x', 'i', 'f', 0, 0 };
char TIFF_HEADER[] = {0x4d, 0x4d, 0, 0x2a};
int const TIFF_HEADER_SIZE = ARRAY_COUNT(TIFF_HEADER);
const int TIFF_HEADER_SIZE = 4;
std::array<char, TIFF_HEADER_SIZE> TIFF_HEADER = { 0x4d, 0x4d, 0, 0x2a };
constexpr bool LITTLE_ENDIAN = std::endian::native == std::endian::little;
enum class IFDTag : uint16_t
{
@@ -22,8 +30,8 @@ namespace
MAKE = 0x010f,
MODEL = 0x0110,
ORIENTATION = 0x0112,
XRESOLUTION = 0x011a,
YRESOLUTION = 0x011b,
X_RESOLUTION = 0x011a,
Y_RESOLUTION = 0x011b,
RESOLUTION_UNIT = 0x0128,
SOFTWARE_USED = 0x0131,
DATE_TAKEN = 0x0132,
@@ -40,143 +48,212 @@ namespace
RATIONAL = 5,
};
uint32_t endianSwap(uint32_t Value)
uint32_t EndianSwap(uint32_t value)
{
uint32_t Result;
uint32_t result;
char *Ptr = (char *)&Value;
char *Out = (char *)&Result;
Out[0] = Ptr[3];
Out[1] = Ptr[2];
Out[2] = Ptr[1];
Out[3] = Ptr[0];
char *ptr = (char *) &value;
std::reverse(ptr, ptr + 4);
result = value;
return Result;
}
uint16_t endianSwap(uint16_t Value)
{
uint16_t Result;
char *Ptr = (char *)&Value;
char *Out = (char *)&Result;
Out[0] = Ptr[1];
Out[1] = Ptr[0];
return Result;
}
int appendU8(std::vector<uint8_t>& array, uint8_t value)
{
int result = array.size();
array.push_back(value);
return result;
}
int appendU16(std::vector<uint8_t>& array, uint16_t value, bool endianSwap = false)
uint16_t EndianSwap(uint16_t value)
{
int result = array.size();
uint16_t result;
if(endianSwap)
value = ::endianSwap(value);
char *ptr = (char *) &value;
std::reverse(ptr, ptr + 2);
result = value;
char *src = (char *)&value;
return result;
}
int AppendU8(std::vector<uint8_t>& array, uint8_t value)
{
int offset = array.size();
array.push_back(value);
return offset;
}
int AppendU16(std::vector<uint8_t>& array, uint16_t value)
{
int offset = array.size();
if constexpr (LITTLE_ENDIAN)
{
value = ::EndianSwap(value);
}
char *src = (char *) &value;
array.push_back(src[0]);
array.push_back(src[1]);
return result;
return offset;
}
int appendU32(std::vector<uint8_t>& array, uint32_t value, bool endianSwap = false)
// no endian swap
int AppendU32NES(std::vector<uint8_t>& array, uint32_t value)
{
int result = array.size();
int offset = array.size();
if(endianSwap)
value = ::endianSwap(value);
char *src = (char *)&value;
char *src = (char *) &value;
array.push_back(src[0]);
array.push_back(src[1]);
array.push_back(src[2]);
array.push_back(src[3]);
return result;
return offset;
}
int appendVector(std::vector<uint8_t>& array, std::vector<uint8_t> values)
int AppendU32(std::vector<uint8_t>& array, uint32_t value)
{
int result = array.size();
int offset = array.size();
for(auto value : values)
if constexpr (LITTLE_ENDIAN)
{
value = ::EndianSwap(value);
}
char *src = (char *) &value;
array.push_back(src[0]);
array.push_back(src[1]);
array.push_back(src[2]);
array.push_back(src[3]);
return offset;
}
template<int COUNT>
int AppendVector(std::vector<uint8_t>& array, const std::array<char, COUNT>& values)
{
int offset = array.size();
for (auto value: values)
{
array.push_back(value);
}
return result;
return offset;
}
int appendVector(std::vector<uint8_t>& array, char* values, int count)
int AppendVector(std::vector<uint8_t>& array, std::vector<uint8_t> values)
{
int result = array.size();
int offset = array.size();
for(int i = 0; i < count; ++i)
for (auto value: values)
{
array.push_back(value);
}
return offset;
}
int AppendVector(std::vector<uint8_t>& array, char* values, int count)
{
int offset = array.size();
for (int i = 0; i < count; ++i)
{
array.push_back(values[i]);
}
return result;
return offset;
}
int appendRational(std::vector<uint8_t>& array, const OpenVulkano::Image::RationalValue& rational, bool endianSwap = false)
int AppendRational(std::vector<uint8_t>& array, const OpenVulkano::Image::RationalValue& rational)
{
int result = array.size();
int offset = array.size();
appendU32(array, rational.nominator, endianSwap);
appendU32(array, rational.denominator, endianSwap);
AppendU32(array, rational.nominator);
AppendU32(array, rational.denominator);
return result;
return offset;
}
int appendGPSCoords(std::vector<uint8_t>& array, const OpenVulkano::Image::GPSCoords& coords, bool endianSwap = false)
int AppendGPSCoords(std::vector<uint8_t>& array, const OpenVulkano::Image::GPSCoords& coords)
{
int result = array.size();
int offset = array.size();
appendU32(array, coords.degrees, endianSwap);
appendU32(array, 1, endianSwap);
AppendU32(array, coords.degrees);
AppendU32(array, 1);
appendU32(array, coords.minutes, endianSwap);
appendU32(array, 1, endianSwap);
AppendU32(array, coords.minutes);
AppendU32(array, 1);
appendU32(array, coords.seconds, endianSwap);
appendU32(array, 1, endianSwap);
AppendU32(array, coords.seconds);
AppendU32(array, 1);
return result;
return offset;
}
void AppendTagAndValueType(std::vector<uint8_t>& array, uint16_t tag, uint16_t valueType)
{
AppendU16(array, tag);
AppendU16(array, valueType);
}
void AddValueToU32AndEndianSwap(uint8_t *data, int valueToAdd)
{
uint32_t *ptr = (uint32_t *) data;
*ptr += valueToAdd;
*ptr = EndianSwap(*ptr);
}
}
namespace OpenVulkano::Image
{
std::vector<uint8_t> ExifBuilder::build()
GPSCoords::GPSCoords(int32_t valueForAll)
{
this->degrees = valueForAll;
this->minutes = valueForAll;
this->seconds = valueForAll;
}
GPSCoords::GPSCoords(int32_t degrees, int32_t minutes, int32_t seconds)
{
this->degrees = degrees;
this->minutes = minutes;
this->seconds = seconds;
}
void ExifBuilder::SetAltitude(float level)
{
altitudeIsAboveSeaLevel = level >= 0;
if (level < 0)
{
level = -level;
}
altitude = level;
}
std::vector<uint8_t> ExifBuilder::Build()
{
std::vector<uint8_t> result;
std::vector<uint8_t> data; // the data that has ascii values
std::vector<uint8_t> data; // the data that has ascii and rational values
appendVector(result, EXIF_HEADER_AND_PADDING, EXIF_HEADER_SIZE);
appendVector(result, TIFF_HEADER, TIFF_HEADER_SIZE);
if (dateTaken == "")
{
dateTaken = GetCurrentTimestamp();
}
AppendVector(result, EXIF_HEADER_AND_PADDING);
AppendVector(result, TIFF_HEADER);
int numberOfMainTags = 1; // 1 is for GPS Info tag
numberOfMainTags += orientation != 0;
numberOfMainTags += make != "";
numberOfMainTags += model != "";
numberOfMainTags += xresolution.nominator || xresolution.denominator;
numberOfMainTags += yresolution.nominator || yresolution.denominator;
numberOfMainTags += xResolution.nominator || xResolution.denominator;
numberOfMainTags += yResolution.nominator || yResolution.denominator;
numberOfMainTags += resolutionUnit != 0;
numberOfMainTags += exposureTime.nominator || exposureTime.denominator;
numberOfMainTags += softwareUsed != "";
numberOfMainTags += dateTaken != "";
appendU32(result, 8, true); // append offset to the ifd
appendU16(result, numberOfMainTags, true);
AppendU32(result, 8); // Append offset to the ifd
AppendU16(result, numberOfMainTags);
// offsets in result array where the offset to the data should be stored
int makeOffset = 0;
@@ -186,96 +263,88 @@ namespace OpenVulkano::Image
int gpsInfoOffset = 0;
// Make
if(make != "")
if (make != "")
{
appendU16(result, (uint16_t)IFDTag::MAKE, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, make.size() + 1, true);
makeOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)make.c_str(), make.size() + 1);
AppendTagAndValueType(result, (uint16_t) IFDTag::MAKE, (uint16_t) IFDValueType::ASCII);
AppendU32(result, make.size() + 1);
makeOffset = AppendU32(result, data.size() + 1);
int offsetInData = AppendVector(data, (char *)make.c_str(), make.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + makeOffset);
*ptr = offsetInData;
}
// Model
if(model != "")
if (model != "")
{
appendU16(result, (uint16_t)IFDTag::MODEL, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, model.size() + 1, true);
modelOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)model.c_str(), model.size() + 1);
AppendTagAndValueType(result, (uint16_t) IFDTag::MODEL, (uint16_t) IFDValueType::ASCII);
AppendU32(result, model.size() + 1);
modelOffset = AppendU32(result, data.size() + 1);
int offsetInData = AppendVector(data, (char *)model.c_str(), model.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + modelOffset);
*ptr = offsetInData;
}
// Orientation
if(orientation != 0)
if (orientation != 0)
{
appendU16(result, (uint16_t)IFDTag::ORIENTATION, true);
appendU16(result, (uint16_t)IFDValueType::SHORT, true);
appendU32(result, 1, true);
appendU16(result, (uint16_t)orientation, true);
appendU16(result, 0); // padding
AppendTagAndValueType(result, (uint16_t) IFDTag::ORIENTATION, (uint16_t) IFDValueType::SHORT);
AppendU32(result, 1);
AppendU16(result, (uint16_t)orientation);
AppendU16(result, 0); // padding
}
// XResolution
int xresolutionOffset = 0;
if(xresolution.nominator || xresolution.denominator)
// xResolution
int xResolutionOffset = 0;
if (xResolution.nominator || xResolution.denominator)
{
appendU16(result, (uint16_t)IFDTag::XRESOLUTION, true);
appendU16(result, (uint16_t)IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
xresolutionOffset = appendU32(result, data.size(), true);
int offsetInData = appendRational(data, xresolution, true);
uint32_t* ptr = (uint32_t *)(result.data() + xresolutionOffset);
AppendTagAndValueType(result, (uint16_t) IFDTag::X_RESOLUTION, (uint16_t) IFDValueType::RATIONAL);
AppendU32(result, 1); // number of components
xResolutionOffset = AppendU32(result, data.size());
int offsetInData = AppendRational(data, xResolution);
uint32_t* ptr = (uint32_t *)(result.data() + xResolutionOffset);
*ptr = offsetInData;
}
// YResolution
int yresolutionOffset = 0;
if(yresolution.nominator || yresolution.denominator)
// yResolution
int yResolutionOffset = 0;
if (yResolution.nominator || yResolution.denominator)
{
appendU16(result, (uint16_t)IFDTag::YRESOLUTION, true);
appendU16(result, (uint16_t)IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
yresolutionOffset = appendU32(result, data.size(), true);
int offsetInData = appendRational(data, yresolution, true);
uint32_t* ptr = (uint32_t *)(result.data() + yresolutionOffset);
AppendTagAndValueType(result, (uint16_t) IFDTag::Y_RESOLUTION, (uint16_t) IFDValueType::RATIONAL);
AppendU32(result, 1); // number of components
yResolutionOffset = AppendU32(result, data.size());
int offsetInData = AppendRational(data, yResolution);
uint32_t* ptr = (uint32_t *)(result.data() + yResolutionOffset);
*ptr = offsetInData;
}
// Exposure Time
int exposureTimeOffset = 0;
if(exposureTime.nominator || exposureTime.denominator)
if (exposureTime.nominator || exposureTime.denominator)
{
appendU16(result, (uint16_t)IFDTag::EXPOSURE_TIME, true);
appendU16(result, (uint16_t)IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
exposureTimeOffset = appendU32(result, data.size(), true);
int offsetInData = appendRational(data, exposureTime, true);
AppendTagAndValueType(result, (uint16_t) IFDTag::EXPOSURE_TIME, (uint16_t) IFDValueType::RATIONAL);
AppendU32(result, 1); // number of components
exposureTimeOffset = AppendU32(result, data.size());
int offsetInData = AppendRational(data, exposureTime);
uint32_t* ptr = (uint32_t *)(result.data() + exposureTimeOffset);
*ptr = offsetInData;
}
// ResolutionUnit
if(resolutionUnit != 0)
if (resolutionUnit != 0)
{
appendU16(result, (uint16_t)IFDTag::RESOLUTION_UNIT, true);
appendU16(result, (uint16_t)IFDValueType::SHORT, true);
appendU32(result, 1, true); // number of components
appendU16(result, resolutionUnit, true);
appendU16(result, 0); // padding
AppendTagAndValueType(result, (uint16_t) IFDTag::RESOLUTION_UNIT, (uint16_t) IFDValueType::SHORT);
AppendU32(result, 1); // number of components
AppendU16(result, resolutionUnit);
AppendU16(result, 0); // padding
}
// Software Used
if(softwareUsed != "")
if (softwareUsed != "")
{
appendU16(result, (uint16_t)IFDTag::SOFTWARE_USED, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, softwareUsed.size() + 1, true);
softwareUsedOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)softwareUsed.c_str(), softwareUsed.size() + 1);
AppendTagAndValueType(result, (uint16_t) IFDTag::SOFTWARE_USED, (uint16_t) IFDValueType::ASCII);
AppendU32(result, softwareUsed.size() + 1);
softwareUsedOffset = AppendU32(result, data.size() + 1);
int offsetInData = AppendVector(data, (char *)softwareUsed.c_str(), softwareUsed.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + softwareUsedOffset);
*ptr = offsetInData;
}
@@ -283,192 +352,174 @@ namespace OpenVulkano::Image
// Date Taken
// NOTE(vb): For some reason windows file properties doesn't print date taken field!
// Even though other software does provide this information without a problem
if(dateTaken != "")
{
appendU16(result, (uint16_t)IFDTag::DATE_TAKEN, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, dateTaken.size() + 1, true);
dateTakenOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)dateTaken.c_str(), dateTaken.size() + 1);
AppendTagAndValueType(result, (uint16_t) IFDTag::DATE_TAKEN, (uint16_t) IFDValueType::ASCII);
AppendU32(result, dateTaken.size() + 1);
dateTakenOffset = AppendU32(result, data.size() + 1);
int offsetInData = AppendVector(data, (char *)dateTaken.c_str(), dateTaken.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + dateTakenOffset);
*ptr = offsetInData;
}
// GPS Info offset
appendU16(result, (uint16_t) IFDTag::GPS_INFO_OFFSET, true);
appendU16(result, (uint16_t) IFDValueType::LONG_, true);
appendU32(result, 1, true); // num components
gpsInfoOffset = appendU32(result, 0, true); // to be filled
AppendTagAndValueType(result, (uint16_t) IFDTag::GPS_INFO_OFFSET, (uint16_t) IFDValueType::LONG_);
AppendU32(result, 1); // num components
gpsInfoOffset = AppendU32(result, 0); // to be filled
// next ifd offset
appendU32(result, 0);
AppendU32(result, 0);
int resultSize = result.size();
appendVector(result, data);
AppendVector(result, data);
int ifdAndSubdataSize = result.size();
if(model != "")
{
uint32_t *ptr = (uint32_t *) (result.data() + modelOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
const int valueToAdd = resultSize - EXIF_HEADER_SIZE;
if (model != "")
{
AddValueToU32AndEndianSwap(result.data() + modelOffset, valueToAdd);
}
if(make != "")
if (make != "")
{
uint32_t *ptr = (uint32_t *) (result.data() + makeOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + makeOffset, valueToAdd);
}
if(xresolutionOffset)
if (xResolutionOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + xresolutionOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + xResolutionOffset, valueToAdd);
}
if(yresolutionOffset)
if (yResolutionOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + yresolutionOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + yResolutionOffset, valueToAdd);
}
if(exposureTimeOffset)
if (exposureTimeOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + exposureTimeOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + exposureTimeOffset, valueToAdd);
}
if(dateTakenOffset)
if (dateTakenOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + dateTakenOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + dateTakenOffset, valueToAdd);
}
if(softwareUsedOffset)
if (softwareUsedOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + softwareUsedOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + softwareUsedOffset, valueToAdd);
}
}
{
uint32_t *ptr = (uint32_t *) (result.data() + gpsInfoOffset);
*ptr = endianSwap((uint32_t)(ifdAndSubdataSize - EXIF_HEADER_SIZE));
*ptr = EndianSwap((uint32_t)(ifdAndSubdataSize - EXIF_HEADER_SIZE));
}
// Writing GPS Info structure
int numberOfGPSInfoTags = 8;
appendU16(result, numberOfGPSInfoTags, true);
AppendU16(result, numberOfGPSInfoTags);
// Latitude Ref
appendU16(result, 1, true);
appendU16(result, (uint16_t) IFDValueType::ASCII, true);
appendU32(result, 2, true); // 2 for N/S + \0
appendU8(result, latitudeRef == LatitudeRef::NORTH ? 'N' : 'S');
appendU8(result, 0);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
AppendTagAndValueType(result, 1, (uint16_t) IFDValueType::ASCII);
AppendU32(result, 2); // 2 for N/S + \0
AppendU8(result, latitudeRef == LatitudeRef::NORTH ? 'N' : 'S');
AppendU8(result, 0);
AppendU8(result, 0); // padding
AppendU8(result, 0); // padding
// Latitude
appendU16(result, 2, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 3, true); // number of components
int latitudeOffset = appendU32(result, 0); // 0 * sizeof(RationalValue)
AppendTagAndValueType(result, 2, (uint16_t) IFDValueType::RATIONAL);
AppendU32(result, 3); // number of components
int latitudeOffset = AppendU32NES(result, 0); // 0 * sizeof(RationalValue)
// Longitude Ref
appendU16(result, 3, true);
appendU16(result, (uint16_t) IFDValueType::ASCII, true);
appendU32(result, 2, true); // 2 for E/W + \0
appendU8(result, longitudeRef == LongitudeRef::EAST ? 'E' : 'W');
appendU8(result, 0);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
AppendTagAndValueType(result, 3, (uint16_t) IFDValueType::ASCII);
AppendU32(result, 2); // 2 for E/W + \0
AppendU8(result, longitudeRef == LongitudeRef::EAST ? 'E' : 'W');
AppendU8(result, 0);
AppendU8(result, 0); // padding
AppendU8(result, 0); // padding
// Longitude
appendU16(result, 4, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 3, true); // number of components
int longitudeOffset = appendU32(result, 24); // 3 * sizeof(RationalValue)
AppendTagAndValueType(result, 4, (uint16_t) IFDValueType::RATIONAL);
AppendU32(result, 3); // number of components
int longitudeOffset = AppendU32NES(result, 24); // 3 * sizeof(RationalValue)
// Altitude Ref
appendU16(result, 5, true);
appendU16(result, (uint16_t) IFDValueType::BYTE, true);
appendU32(result, 1, true); // number of components
appendU8(result, altitudeIsAboveSeaLevel ? 0 : 1);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
appendU8(result, 0); // padding
AppendTagAndValueType(result, 5, (uint16_t) IFDValueType::BYTE);
AppendU32(result, 1); // number of components
AppendU8(result, altitudeIsAboveSeaLevel ? 0 : 1);
AppendU8(result, 0); // padding
AppendU8(result, 0); // padding
AppendU8(result, 0); // padding
// Altitude
appendU16(result, 6, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
int altitudeOffset = appendU32(result, 48); // 6 * sizeof(RationalValue)
AppendTagAndValueType(result, 6, (uint16_t) IFDValueType::RATIONAL);
AppendU32(result, 1); // number of components
int altitudeOffset = AppendU32NES(result, 48); // 6 * sizeof(RationalValue)
// Track Ref
appendU16(result, 14, true);
appendU16(result, (uint16_t) IFDValueType::ASCII, true);
appendU32(result, 2, true); // 2 for T/M + \0
appendU8(result, trackRef == GPSTrackRef::TRUE_ ? 'T' : 'M');
appendU8(result, 0);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
AppendTagAndValueType(result, 14, (uint16_t) IFDValueType::ASCII);
AppendU32(result, 2); // 2 for T/M + \0
AppendU8(result, trackRef == GPSTrackRef::TRUE_NORTH ? 'T' : 'M');
AppendU8(result, 0);
AppendU8(result, 0); // padding
AppendU8(result, 0); // padding
// Track
appendU16(result, 15, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
int trackOffset = appendU32(result, 56); // 7 * sizeof(RationalValue)
AppendTagAndValueType(result, 15, (uint16_t) IFDValueType::RATIONAL);
AppendU32(result, 1); // number of components
int trackOffset = AppendU32NES(result, 56); // 7 * sizeof(RationalValue)
//
{
int sizeOfResultSoFar = result.size();
const int valueToAdd = sizeOfResultSoFar - EXIF_HEADER_SIZE;
// Latitude
{
uint32_t *ptr = (uint32_t *) (result.data() + latitudeOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + latitudeOffset, valueToAdd);
}
// Longitude
{
uint32_t *ptr = (uint32_t *) (result.data() + longitudeOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + longitudeOffset, valueToAdd);
}
// Altitude
{
uint32_t *ptr = (uint32_t *) (result.data() + altitudeOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + altitudeOffset, valueToAdd);
}
// Track
{
uint32_t *ptr = (uint32_t *) (result.data() + trackOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
AddValueToU32AndEndianSwap(result.data() + trackOffset, valueToAdd);
}
}
//
appendGPSCoords(result, latitude, true);
appendGPSCoords(result, longitude, true);
AppendGPSCoords(result, latitude);
AppendGPSCoords(result, longitude);
appendU32(result, altitude, true);
appendU32(result, 1, true); // denominator for altitude
AppendU32(result, altitude);
AppendU32(result, 1); // denominator for altitude
int const TRACK_PRECISION = 10000;
appendU32(result, track * TRACK_PRECISION, true);
appendU32(result, TRACK_PRECISION, true);
AppendU32(result, track * TRACK_PRECISION);
AppendU32(result, TRACK_PRECISION);
return result;
}
std::string ExifBuilder::GetCurrentTimestamp()
{
auto now = std::chrono::system_clock::now();
std::time_t currentTime = std::chrono::system_clock::to_time_t(now);
std::tm *timeInfo = std::localtime(&currentTime);
std::ostringstream oss;
oss << std::put_time(timeInfo, "%Y:%m:%d %H:%M:%S");
return oss.str();
}
}

View File

@@ -29,13 +29,16 @@ namespace OpenVulkano::Image
};
enum class GPSTrackRef
{
TRUE_,
TRUE_NORTH,
MAGNETIC
};
struct GPSCoords
{
int32_t degrees, minutes, seconds;
GPSCoords(int32_t valueForAll = 0);
GPSCoords(int32_t degrees, int32_t minutes, int32_t seconds);
};
class ExifBuilder
@@ -44,26 +47,29 @@ namespace OpenVulkano::Image
int orientation = 0;
std::string make;
std::string model;
RationalValue xresolution = {0, 0};
RationalValue yresolution = {0, 0};
RationalValue xResolution = { 0, 0 };
RationalValue yResolution = { 0, 0 };
int resolutionUnit = 0;
RationalValue exposureTime = {0, 0};
RationalValue exposureTime = { 0, 0 };
std::string dateTaken; // format: yyyy:mm:dd hh:mm:ss
std::string softwareUsed;
std::string softwareUsed = "OpenVulkano";
LatitudeRef latitudeRef = LatitudeRef::NORTH;
GPSCoords latitude = {0, 0, 0};
GPSCoords latitude = { 0, 0, 0 };
LongitudeRef longitudeRef = LongitudeRef::EAST;
GPSCoords longitude = {0, 0, 0};
GPSCoords longitude = { 0, 0, 0 };
bool altitudeIsAboveSeaLevel = true;
uint32_t altitude = 0;
GPSTrackRef trackRef = GPSTrackRef::TRUE_;
GPSTrackRef trackRef = GPSTrackRef::TRUE_NORTH;
float track = 0; // range is [0.0; 360.0)
void SetAltitude(float level);
// Typical usage is -> jpeg_write_marker(cinfo, JPEG_APP0 + 1, exif_data.data(), exif_data.size());
std::vector<uint8_t> build();
std::vector<uint8_t> Build();
static std::string GetCurrentTimestamp();
};
}