Files
OpenVulkano/openVulkanoCpp/Image/ExifBuilder.cpp

474 lines
13 KiB
C++

/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
#include "ExifBuilder.hpp"
#define ARRAY_COUNT(Array) (sizeof(Array) / sizeof(*Array))
namespace
{
char EXIF_HEADER_AND_PADDING[] = {'E', 'x', 'i', 'f', 0, 0};
int const EXIF_HEADER_SIZE = ARRAY_COUNT(EXIF_HEADER_AND_PADDING);
char TIFF_HEADER[] = {0x4d, 0x4d, 0, 0x2a};
int const TIFF_HEADER_SIZE = ARRAY_COUNT(TIFF_HEADER);
enum class IFDTag : uint16_t
{
END = 0,
MAKE = 0x010f,
MODEL = 0x0110,
ORIENTATION = 0x0112,
XRESOLUTION = 0x011a,
YRESOLUTION = 0x011b,
RESOLUTION_UNIT = 0x0128,
SOFTWARE_USED = 0x0131,
DATE_TAKEN = 0x0132,
EXPOSURE_TIME = 0x829a,
GPS_INFO_OFFSET = 0x8825,
};
enum class IFDValueType
{
BYTE = 1,
ASCII = 2,
SHORT = 3,
LONG_ = 4,
RATIONAL = 5,
};
uint32_t endianSwap(uint32_t Value)
{
uint32_t Result;
char *Ptr = (char *)&Value;
char *Out = (char *)&Result;
Out[0] = Ptr[3];
Out[1] = Ptr[2];
Out[2] = Ptr[1];
Out[3] = Ptr[0];
return Result;
}
uint16_t endianSwap(uint16_t Value)
{
uint16_t Result;
char *Ptr = (char *)&Value;
char *Out = (char *)&Result;
Out[0] = Ptr[1];
Out[1] = Ptr[0];
return Result;
}
int appendU8(std::vector<uint8_t>& array, uint8_t value)
{
int result = array.size();
array.push_back(value);
return result;
}
int appendU16(std::vector<uint8_t>& array, uint16_t value, bool endianSwap = false)
{
int result = array.size();
if(endianSwap)
value = ::endianSwap(value);
char *src = (char *)&value;
array.push_back(src[0]);
array.push_back(src[1]);
return result;
}
int appendU32(std::vector<uint8_t>& array, uint32_t value, bool endianSwap = false)
{
int result = array.size();
if(endianSwap)
value = ::endianSwap(value);
char *src = (char *)&value;
array.push_back(src[0]);
array.push_back(src[1]);
array.push_back(src[2]);
array.push_back(src[3]);
return result;
}
int appendVector(std::vector<uint8_t>& array, std::vector<uint8_t> values)
{
int result = array.size();
for(auto value : values)
{
array.push_back(value);
}
return result;
}
int appendVector(std::vector<uint8_t>& array, char* values, int count)
{
int result = array.size();
for(int i = 0; i < count; ++i)
{
array.push_back(values[i]);
}
return result;
}
int appendRational(std::vector<uint8_t>& array, const OpenVulkano::Image::RationalValue& rational, bool endianSwap = false)
{
int result = array.size();
appendU32(array, rational.nominator, endianSwap);
appendU32(array, rational.denominator, endianSwap);
return result;
}
int appendGPSCoords(std::vector<uint8_t>& array, const OpenVulkano::Image::GPSCoords& coords, bool endianSwap = false)
{
int result = array.size();
appendU32(array, coords.degrees, endianSwap);
appendU32(array, 1, endianSwap);
appendU32(array, coords.minutes, endianSwap);
appendU32(array, 1, endianSwap);
appendU32(array, coords.seconds, endianSwap);
appendU32(array, 1, endianSwap);
return result;
}
}
namespace OpenVulkano::Image
{
std::vector<uint8_t> ExifBuilder::build()
{
std::vector<uint8_t> result;
std::vector<uint8_t> data; // the data that has ascii values
appendVector(result, EXIF_HEADER_AND_PADDING, EXIF_HEADER_SIZE);
appendVector(result, TIFF_HEADER, TIFF_HEADER_SIZE);
int numberOfMainTags = 1; // 1 is for GPS Info tag
numberOfMainTags += orientation != 0;
numberOfMainTags += make != "";
numberOfMainTags += model != "";
numberOfMainTags += xresolution.nominator || xresolution.denominator;
numberOfMainTags += yresolution.nominator || yresolution.denominator;
numberOfMainTags += resolutionUnit != 0;
numberOfMainTags += exposureTime.nominator || exposureTime.denominator;
numberOfMainTags += softwareUsed != "";
numberOfMainTags += dateTaken != "";
appendU32(result, 8, true); // append offset to the ifd
appendU16(result, numberOfMainTags, true);
// offsets in result array where the offset to the data should be stored
int makeOffset = 0;
int modelOffset = 0;
int dateTakenOffset = 0;
int softwareUsedOffset = 0;
int gpsInfoOffset = 0;
// Make
if(make != "")
{
appendU16(result, (uint16_t)IFDTag::MAKE, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, make.size() + 1, true);
makeOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)make.c_str(), make.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + makeOffset);
*ptr = offsetInData;
}
// Model
if(model != "")
{
appendU16(result, (uint16_t)IFDTag::MODEL, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, model.size() + 1, true);
modelOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)model.c_str(), model.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + modelOffset);
*ptr = offsetInData;
}
// Orientation
if(orientation != 0)
{
appendU16(result, (uint16_t)IFDTag::ORIENTATION, true);
appendU16(result, (uint16_t)IFDValueType::SHORT, true);
appendU32(result, 1, true);
appendU16(result, (uint16_t)orientation, true);
appendU16(result, 0); // padding
}
// XResolution
int xresolutionOffset = 0;
if(xresolution.nominator || xresolution.denominator)
{
appendU16(result, (uint16_t)IFDTag::XRESOLUTION, true);
appendU16(result, (uint16_t)IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
xresolutionOffset = appendU32(result, data.size(), true);
int offsetInData = appendRational(data, xresolution, true);
uint32_t* ptr = (uint32_t *)(result.data() + xresolutionOffset);
*ptr = offsetInData;
}
// YResolution
int yresolutionOffset = 0;
if(yresolution.nominator || yresolution.denominator)
{
appendU16(result, (uint16_t)IFDTag::YRESOLUTION, true);
appendU16(result, (uint16_t)IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
yresolutionOffset = appendU32(result, data.size(), true);
int offsetInData = appendRational(data, yresolution, true);
uint32_t* ptr = (uint32_t *)(result.data() + yresolutionOffset);
*ptr = offsetInData;
}
// Exposure Time
int exposureTimeOffset = 0;
if(exposureTime.nominator || exposureTime.denominator)
{
appendU16(result, (uint16_t)IFDTag::EXPOSURE_TIME, true);
appendU16(result, (uint16_t)IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
exposureTimeOffset = appendU32(result, data.size(), true);
int offsetInData = appendRational(data, exposureTime, true);
uint32_t* ptr = (uint32_t *)(result.data() + exposureTimeOffset);
*ptr = offsetInData;
}
// ResolutionUnit
if(resolutionUnit != 0)
{
appendU16(result, (uint16_t)IFDTag::RESOLUTION_UNIT, true);
appendU16(result, (uint16_t)IFDValueType::SHORT, true);
appendU32(result, 1, true); // number of components
appendU16(result, resolutionUnit, true);
appendU16(result, 0); // padding
}
// Software Used
if(softwareUsed != "")
{
appendU16(result, (uint16_t)IFDTag::SOFTWARE_USED, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, softwareUsed.size() + 1, true);
softwareUsedOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)softwareUsed.c_str(), softwareUsed.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + softwareUsedOffset);
*ptr = offsetInData;
}
// Date Taken
// NOTE(vb): For some reason windows file properties doesn't print date taken field!
// Even though other software does provide this information without a problem
if(dateTaken != "")
{
appendU16(result, (uint16_t)IFDTag::DATE_TAKEN, true);
appendU16(result, (uint16_t)IFDValueType::ASCII, true);
appendU32(result, dateTaken.size() + 1, true);
dateTakenOffset = appendU32(result, data.size() + 1, true);
int offsetInData = appendVector(data, (char *)dateTaken.c_str(), dateTaken.size() + 1);
uint32_t* ptr = (uint32_t *)(result.data() + dateTakenOffset);
*ptr = offsetInData;
}
// GPS Info offset
appendU16(result, (uint16_t) IFDTag::GPS_INFO_OFFSET, true);
appendU16(result, (uint16_t) IFDValueType::LONG_, true);
appendU32(result, 1, true); // num components
gpsInfoOffset = appendU32(result, 0, true); // to be filled
// next ifd offset
appendU32(result, 0);
int resultSize = result.size();
appendVector(result, data);
int ifdAndSubdataSize = result.size();
if(model != "")
{
uint32_t *ptr = (uint32_t *) (result.data() + modelOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
if(make != "")
{
uint32_t *ptr = (uint32_t *) (result.data() + makeOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
if(xresolutionOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + xresolutionOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
if(yresolutionOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + yresolutionOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
if(exposureTimeOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + exposureTimeOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
if(dateTakenOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + dateTakenOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
if(softwareUsedOffset)
{
uint32_t *ptr = (uint32_t *) (result.data() + softwareUsedOffset);
*ptr += resultSize - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
{
uint32_t *ptr = (uint32_t *) (result.data() + gpsInfoOffset);
*ptr = endianSwap((uint32_t)(ifdAndSubdataSize - EXIF_HEADER_SIZE));
}
// Writing GPS Info structure
int numberOfGPSInfoTags = 8;
appendU16(result, numberOfGPSInfoTags, true);
// Latitude Ref
appendU16(result, 1, true);
appendU16(result, (uint16_t) IFDValueType::ASCII, true);
appendU32(result, 2, true); // 2 for N/S + \0
appendU8(result, latitudeRef == LatitudeRef::NORTH ? 'N' : 'S');
appendU8(result, 0);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
// Latitude
appendU16(result, 2, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 3, true); // number of components
int latitudeOffset = appendU32(result, 0); // 0 * sizeof(RationalValue)
// Longitude Ref
appendU16(result, 3, true);
appendU16(result, (uint16_t) IFDValueType::ASCII, true);
appendU32(result, 2, true); // 2 for E/W + \0
appendU8(result, longitudeRef == LongitudeRef::EAST ? 'E' : 'W');
appendU8(result, 0);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
// Longitude
appendU16(result, 4, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 3, true); // number of components
int longitudeOffset = appendU32(result, 24); // 3 * sizeof(RationalValue)
// Altitude Ref
appendU16(result, 5, true);
appendU16(result, (uint16_t) IFDValueType::BYTE, true);
appendU32(result, 1, true); // number of components
appendU8(result, altitudeIsAboveSeaLevel ? 0 : 1);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
appendU8(result, 0); // padding
// Altitude
appendU16(result, 6, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
int altitudeOffset = appendU32(result, 48); // 6 * sizeof(RationalValue)
// Track Ref
appendU16(result, 14, true);
appendU16(result, (uint16_t) IFDValueType::ASCII, true);
appendU32(result, 2, true); // 2 for T/M + \0
appendU8(result, trackRef == GPSTrackRef::TRUE_ ? 'T' : 'M');
appendU8(result, 0);
appendU8(result, 0); // padding
appendU8(result, 0); // padding
// Track
appendU16(result, 15, true);
appendU16(result, (uint16_t) IFDValueType::RATIONAL, true);
appendU32(result, 1, true); // number of components
int trackOffset = appendU32(result, 56); // 7 * sizeof(RationalValue)
//
int sizeOfResultSoFar = result.size();
// Latitude
{
uint32_t *ptr = (uint32_t *) (result.data() + latitudeOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
// Longitude
{
uint32_t *ptr = (uint32_t *) (result.data() + longitudeOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
// Altitude
{
uint32_t *ptr = (uint32_t *) (result.data() + altitudeOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
// Track
{
uint32_t *ptr = (uint32_t *) (result.data() + trackOffset);
*ptr += sizeOfResultSoFar - EXIF_HEADER_SIZE;
*ptr = endianSwap(*ptr);
}
//
appendGPSCoords(result, latitude, true);
appendGPSCoords(result, longitude, true);
appendU32(result, altitude, true);
appendU32(result, 1, true); // denominator for altitude
int const TRACK_PRECISION = 10000;
appendU32(result, track * TRACK_PRECISION, true);
appendU32(result, TRACK_PRECISION, true);
return result;
}
}