Files
OpenVulkano/openVulkanoCpp/Vulkan/Resources/ResourceManager.cpp

352 lines
12 KiB
C++

/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
#include "ResourceManager.hpp"
#include "Scene/Vertex.hpp"
#include "Scene/Geometry.hpp"
#include "Scene/Material.hpp"
#include "Vulkan/Context.hpp"
#include "Vulkan/Scene/VulkanShader.hpp"
#include "Vulkan/Scene/VulkanGeometry.hpp"
#include "Vulkan/Scene/VulkanNode.hpp"
#include "Vulkan/Scene/VulkanTexture.hpp"
#include "Vulkan/Image.hpp"
#include "Vulkan/Scene/VulkanCamera.hpp"
namespace openVulkanoCpp::Vulkan
{
ResourceManager* ResourceManager::INSTANCE;
ResourceManager::ResourceManager()
{
static_assert(sizeof(DescriptorSetLayoutBinding) == sizeof(vk::DescriptorSetLayoutBinding));
freeFunction = [this](ManagedBuffer* buffer) { this->FreeBuffer(buffer); };
}
ResourceManager::~ResourceManager() noexcept
{
if (device) ResourceManager::Close();
}
void ResourceManager::Init(Context* context, int buffers)
{
this->context = context;
this->device = context->device->device;
this->buffers = buffers;
uniformBufferAlignment = context->device->properties.limits.minUniformBufferOffsetAlignment;
cmdPools = new vk::CommandPool[buffers];
cmdBuffers = new vk::CommandBuffer[buffers];
semaphores = new vk::Semaphore[buffers];
for (int i = 0; i < buffers; i++)
{
cmdPools[i] = this->device.createCommandPool({ {}, context->device->queueIndices.transfer });
cmdBuffers[i] = this->device.allocateCommandBuffers({ cmdPools[i], vk::CommandBufferLevel::ePrimary, 1 })[0];
semaphores[i] = this->device.createSemaphore({});
}
toFree.resize(buffers);
transferQueue = this->device.getQueue(context->device->queueIndices.transfer, 0);
// Setup descriptor pool
constexpr vk::DescriptorPoolSize sizeInfo[] = {
{ vk::DescriptorType::eSampler, 100000 },
{ vk::DescriptorType::eCombinedImageSampler, 100000 },
{ vk::DescriptorType::eSampledImage, 100000 },
{ vk::DescriptorType::eStorageImage, 100000 },
{ vk::DescriptorType::eUniformTexelBuffer, 100000 },
{ vk::DescriptorType::eStorageTexelBuffer, 100000 },
{ vk::DescriptorType::eUniformBuffer, 100000 },
{ vk::DescriptorType::eStorageBuffer, 100000 },
{ vk::DescriptorType::eUniformBufferDynamic, 100000 },
{ vk::DescriptorType::eStorageBufferDynamic, 100000 },
{ vk::DescriptorType::eInputAttachment, 100000 }
};
const vk::DescriptorPoolCreateInfo poolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 100000, std::size(sizeInfo), sizeInfo);
descriptorPool = device.createDescriptorPool(poolCreateInfo);
INSTANCE = this;
}
void ResourceManager::Close()
{
transferQueue.waitIdle();
for (int i = 0; i < buffers; i++)
{
device.freeCommandBuffers(cmdPools[i], 1, &cmdBuffers[i]);
device.destroyCommandPool(cmdPools[i]);
}
device.destroyDescriptorPool(descriptorPool);
shaders.clear();
cmdBuffers = nullptr;
cmdPools = nullptr;
device = nullptr;
}
void ResourceManager::StartFrame(uint64_t frameId)
{
currentBuffer = frameId;
FreeBuffers();
device.resetCommandPool(cmdPools[currentBuffer], {});
cmdBuffers[currentBuffer].begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
}
vk::Semaphore ResourceManager::EndFrame()
{
cmdBuffers[currentBuffer].end();
vk::SubmitInfo si = { 0, nullptr, nullptr, 1, &cmdBuffers[currentBuffer], 1, &semaphores[currentBuffer] };
transferQueue.submit(1, &si, vk::Fence());
return semaphores[currentBuffer];
}
void ResourceManager::Resize()
{
for (auto& shader : shaders)
{
shader->Resize();
}
}
VulkanGeometry* ResourceManager::PrepareGeometry(Scene::Geometry* geometry)
{
const std::unique_lock lock(mutex);
if(!geometry->renderGeo)
{
ManagedBuffer::Ptr vertexBuffer(
CreateDeviceOnlyBufferWithData(sizeof(Vertex) * geometry->GetVertexCount(), vk::BufferUsageFlagBits::eVertexBuffer, geometry->GetVertices()),
freeFunction);
ManagedBuffer::Ptr indexBuffer(
CreateDeviceOnlyBufferWithData(Utils::EnumAsInt(geometry->indexType) * geometry->GetIndexCount(), vk::BufferUsageFlagBits::eIndexBuffer, geometry->GetIndices()),
freeFunction);
VulkanGeometry* vkGeo = new VulkanGeometry(geometry, vertexBuffer, indexBuffer);
geometry->renderGeo = vkGeo;
return vkGeo;
}
return dynamic_cast<VulkanGeometry*>(geometry->renderGeo);
}
void ResourceManager::PrepareMaterial(Scene::Material* material)
{
const std::unique_lock lock(mutex);
if(!material->shader->renderShader)
{
material->shader->renderShader = CreateShader(material->shader);
}
if (material->texture && !material->texture->renderTexture)
{
material->texture->renderTexture = PrepareTexture(material->texture);
}
}
void ResourceManager::PrepareNode(Scene::Node* node)
{
const std::unique_lock lock(mutex);
if (!node->renderNode)
{
UniformBuffer* uBuffer = new UniformBuffer();
ManagedBuffer* buffer;
VulkanNode* vkNode;
const vk::DeviceSize allocSize = Utils::Align(sizeof(Math::Matrix4f), uniformBufferAlignment);
vk::DeviceSize frameSize = 0;
if (node->GetUpdateFrequency() != Scene::UpdateFrequency::Never)
{
frameSize = allocSize;
vkNode = new VulkanNodeDynamic();
const uint32_t imgs = context->swapChain.GetImageCount();
buffer = CreateBuffer(imgs * allocSize, vk::BufferUsageFlagBits::eUniformBuffer, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible);
buffer->Map();
}
else
{
vkNode = new VulkanNode();
buffer = CreateDeviceOnlyBufferWithData(sizeof(Math::Matrix4f), vk::BufferUsageFlagBits::eUniformBuffer, &node->worldMat);
}
uBuffer->Init(buffer, frameSize, allocSize, GetDescriptorLayoutSet(NODE_LAYOUT_BINDING), NODE_LAYOUT_BINDING, 0);
vkNode->Init(node, uBuffer);
node->renderNode = vkNode;
}
}
void ResourceManager::PrepareCamera(Scene::Camera* camera)
{
const std::unique_lock lock(mutex);
if (!camera->renderCamera)
{
const vk::DeviceSize allocSize = Utils::Align(Scene::Camera::SIZE, uniformBufferAlignment);
const uint32_t imgs = context->swapChain.GetImageCount();
ManagedBuffer* buffer = CreateBuffer(imgs * allocSize, vk::BufferUsageFlagBits::eUniformBuffer, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible);
buffer->Map();
UniformBuffer* uBuffer = new UniformBuffer();
uBuffer->Init(buffer, allocSize, allocSize, GetDescriptorLayoutSet(CAM_LAYOUT_BINDING), CAM_LAYOUT_BINDING, 1);
VulkanCamera* vkCam = new VulkanCamera();
vkCam->Init(camera, uBuffer);
camera->renderCamera = vkCam;
}
}
UniformBuffer* ResourceManager::CreateUniformBuffer(const DescriptorSetLayoutBinding& binding, size_t size, void* data, uint32_t setId)
{
const std::unique_lock lock(mutex);
const vk::DeviceSize allocSize = Utils::Align(size, uniformBufferAlignment);
auto buffer = CreateDeviceOnlyBufferWithData(allocSize, vk::BufferUsageFlagBits::eUniformBuffer, data);
UniformBuffer* uBuffer = new UniformBuffer();
uBuffer->Init(buffer, 0, allocSize, GetDescriptorLayoutSet(binding), binding, setId);
return uBuffer;
}
vk::DescriptorSetLayout* ResourceManager::GetDescriptorLayoutSet(const DescriptorSetLayoutBinding& descriptorSetLayoutBinding)
{
auto& layout = descriptorSetLayoutCache[descriptorSetLayoutBinding];
if (!layout)
{
vk::DescriptorSetLayoutCreateInfo createInfo({}, 1, &reinterpret_cast<const vk::DescriptorSetLayoutBinding&>(descriptorSetLayoutBinding));
layout = device.createDescriptorSetLayout(createInfo);
}
return &layout;
}
ManagedBuffer* ResourceManager::CreateSharedMemoryBuffer(const size_t size)
{
const std::unique_lock lock(mutex);
if (!recycleBuffers.empty())
{
for(auto buff : recycleBuffers)
{
if (buff->size == size)
{
Logger::DATA->info("Recycle Buffer");
Utils::Remove(recycleBuffers, buff);
return buff;
}
}
}
ManagedBuffer* buffer = CreateBuffer(size, vk::BufferUsageFlagBits::eVertexBuffer, vk::MemoryPropertyFlagBits::eHostCoherent/* | vk::MemoryPropertyFlagBits::eDeviceLocal*/);
return buffer;
}
void ResourceManager::RemoveShader(VulkanShader* shader)
{
const std::unique_lock lock(mutex);
std::vector<std::unique_ptr<VulkanShader>>::iterator object =
find_if(shaders.begin(), shaders.end(),
[&](auto& obj){ return obj.get() == shader; }
);
shaders.erase(object);
}
void ResourceManager::FreeBuffer(ManagedBuffer* buffer)
{
if (buffer)
toFree[currentBuffer].push_back(buffer);
}
void ResourceManager::DoFreeBuffer(ManagedBuffer* buffer)
{
if (buffer->IsLast())
{
device.destroyBuffer(buffer->buffer);
buffer->allocation->used -= buffer->size;
}
else
{
recycleBuffers.push_back(buffer);
}
}
void ResourceManager::FreeBuffers()
{
for (auto& i : toFree[currentBuffer])
{
DoFreeBuffer(i);
}
toFree[currentBuffer].clear();
}
void ResourceManager::CopyDataToImage(vk::DeviceSize size, void* data, Image* image)
{
ManagedBuffer* uploadBuffer = CreateBuffer(size, vk::BufferUsageFlagBits::eTransferSrc, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible);
uploadBuffer->Copy(data, size, 0);
vk::BufferImageCopy region(0, 0, 0, { vk::ImageAspectFlagBits::eColor, 0, 0, 1 }, { 0, 0, 0 }, image->extent);
cmdBuffers[currentBuffer].copyBufferToImage(uploadBuffer->buffer, image->image, vk::ImageLayout::eTransferDstOptimal, 1, &region);
FreeBuffer(uploadBuffer);
}
ManagedBuffer* ResourceManager::CreateDeviceOnlyBufferWithData(vk::DeviceSize size, vk::BufferUsageFlagBits usage, void* data)
{
ManagedBuffer* target = CreateBuffer(size, usage | vk::BufferUsageFlagBits::eTransferDst, vk::MemoryPropertyFlagBits::eDeviceLocal);
ManagedBuffer* uploadBuffer = CreateBuffer(size, vk::BufferUsageFlagBits::eTransferSrc, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible);
uploadBuffer->Copy(data, size, 0);
RecordCopy(uploadBuffer->buffer, target->buffer, size);
FreeBuffer(uploadBuffer);
return target;
}
ManagedBuffer* ResourceManager::CreateBuffer(vk::DeviceSize size, const vk::BufferUsageFlags& usage, const vk::MemoryPropertyFlags& properties)
{
size = Utils::Align(size, 16);
const vk::BufferCreateInfo bufferCreateInfo = { {}, size, usage, vk::SharingMode::eExclusive };
vk::Buffer buffer = device.createBuffer(bufferCreateInfo);
const vk::MemoryRequirements memoryRequirements = device.getBufferMemoryRequirements(buffer);
uint32_t memtype = context->device->GetMemoryType(memoryRequirements.memoryTypeBits, properties);
if (memoryRequirements.size != size) Logger::DATA->warn("Memory Requirement Size ({0}) != Size ({1})", memoryRequirements.size, size);
MemoryAllocation* allocation = GetFreeMemoryAllocation(memoryRequirements.size, memtype);
uint32_t offset = allocation->used;
device.bindBufferMemory(buffer, allocation->memory, offset);
allocation->used += memoryRequirements.size;
return new ManagedBuffer{ allocation, offset, size, buffer, usage, properties, nullptr };
}
MemoryAllocation* ResourceManager::CreateMemoryAllocation(size_t size, uint32_t type, bool addToCache)
{
MemoryAllocation* alloc = new MemoryAllocation(size, type, device);
const vk::MemoryAllocateInfo allocInfo = { size, type };
alloc->memory = device.allocateMemory(allocInfo);
if (addToCache) allocations.push_back(alloc);
return alloc;
}
MemoryAllocation* ResourceManager::GetFreeMemoryAllocation(size_t size, uint32_t type, bool createIfAllFull)
{
MemoryAllocation* alloc = nullptr;
for (MemoryAllocation* allocation : allocations)
{
if (allocation->type == type && allocation->FreeSpace() >= size)
{
alloc = allocation;
break;
}
}
if(!alloc && createIfAllFull) alloc = CreateMemoryAllocation(64 * 1024 * 1024, type, true);
if(alloc) lastAllocation = alloc;
return alloc;
}
VulkanShader* ResourceManager::CreateShader(Scene::Shader* shader)
{
const std::unique_lock lock(mutex);
VulkanShader* vkShader = new VulkanShader();
vkShader->Init(context, shader, this);
shaders.emplace_back(vkShader);
return vkShader;
}
VulkanTexture* ResourceManager::PrepareTexture(Scene::Texture* texture)
{
VulkanTexture* vkTexture = new VulkanTexture();
vkTexture->Init(this, texture);
//vkTexture->
return vkTexture;
}
}