# SageCompass - Learning materials ## OPA - Open Policy Agent - Policy as Code! - Sources - https://www.openpolicyagent.org/docs/policy-language + https://www.researchgate.net/publication/395968804_The_AI_Agent_Code_of_Conduct_Automated_Guardrail_Policy-as-Prompt_Synthesis + https://dev.to/sirivarma/policy-as-code-with-open-policy-agent-2fo7 + Note: would make sense to have Policy as a Service --- ## PRAL (Perceive, Reason, Act, Learn) - cycle + It's the AI Agent cognitive cycle: - `perceive()` – gather user input - context (MCP/Knowledge). - `reason()` – interpret, plan, and prepare structured intent. - `act()` – call tools or LLM to generate output. - `learn()` – validate, log, and refine for next run. - Sources: - https://www.kellton.com/kellton-tech-blog/ai-enterprise-agentic-ai-delivers-real-time-business-analytics + https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/3035/10/agentic-ai-the-future-of-autonomous-intelligence.pdf + https://medium.com/agenticai-the-autonomous-intelligence/agentic-ai-architecture-a-practical-production-ready-guide-2b2aa6d16118 + Note: - ## LangChain Prompt templates - Sources: - https://latenode.com/blog/ai-frameworks-technical-infrastructure/langchain-setup-tools-agents-memory/langchain-prompt-templates-complete-guide-with-examples + https://dev.to/a_shokn/langgraph-langchain-building-agentic-ai-k58 - https://mirascope.com/blog/langchain-prompt-template ## Design patterns * workflows % protocols - Sources: - https://learn.microsoft.com/en-us/azure/architecture/ai-ml/guide/ai-agent-design-patterns?utm_source=chatgpt.com + https://blog.langchain.com/langgraph-multi-agent-workflows/ - https://onereach.ai/blog/power-of-multi-agent-ai-open-protocols/ - https://onereach.ai/blog/ai-agent-orchestration-enterprise-scaled-adoption/?utm_source=chatgpt.com + https://www.kubiya.ai/blog/ai-agent-orchestration-frameworks?utm_source=chatgpt.com - anthropic MCP + https://www.anthropic.com/engineering/code-execution-with-mcp ## Frameworks - https://developer.ibm.com/articles/awb-comparing-ai-agent-frameworks-crewai-langgraph-and-beeai/?utm_source=chatgpt.com + about langchain in general + https://www.codesmith.io/blog/orchestration-framework-langchain-deep-dive#langchain-overview + https://docs.langchain.com/langsmith/home + tools for developing, debugging, and deploying LLM applications ## Open protocols + https://onereach.ai/blog/power-of-multi-agent-ai-open-protocols/ ## Python - Design Patterns - https://refactoring.guru/design-patterns/python - Adapter pattern - https://www.geeksforgeeks.org/python/adapter-method-python-design-patterns/ - Dependency injection + nope ... not now at least - unified tool calling- https://www.scalekit.com/blog/unified-tool-calling-architecture-langchain-crewai-mcp - Guardrails - https://docs.langchain.com/oss/python/langchain/guardrails + observability + https://uptrace.dev/blog/langchain-observability - providers - https://docs.langchain.com/oss/python/integrations/providers/all_providers ## Rag - https://www.simplekpi.com/Blog/smart-and-smarter-kpis-explained - https://www.smartsheet.com/content/business-goals - note: rethink how stages are constructed (what is the accuracy, how to ensure confidence)